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Abstract 30 

The frequency of xeniid soft coral invasions on Caribbean coral reefs is increasing, with three alien 31 
species reported so far. Xenia umbellata (Anthozoa, Octocorallia, Malacalcyonacea, Xeniidae), native to 32 
the Red Sea, was first reported on Puerto Rico coral reefs in October 2023. Here, we present the first draft 33 
genome assembly and early-invasion genomic resources for the rapidly spreading X. umbellata and its 34 
dinoflagellate symbiont (Family Symbiodiniaceae) produced from a specimen collected five months after 35 
the initial report. Using deep Illumina metagenomic sequencing (~243X coverage), we obtained ~272.4 36 
million high-quality 150 bp reads. The X. umbellata draft genome assembly is 151.14 Mbp in length, 37 
composed of 27,739 scaffolds, with an N50 of 6,477,837 bp. GenomeScope2 predicted a haploid genome 38 
size of 171.6-171.9 Mbp and calculated a heterozygosity of 1.27-1.29%. This suggests that the assembly 39 
captures ~88% of the X. umbellata genome, and the relatively high heterozygosity may indicate introduction 40 
from a genetically diverse wild population. Completeness was further supported by BUSCO analysis 41 
(anthozoa_odb12 lineage), which identified 91.4% complete and 3.9% fragmented BUSCOs. Furthermore, 42 
555,596 sequences were identified as belonging to Symbiodiniaceae, of which 99.97% (n= 555,520) 43 
aligned to a Durusdinium reference genome, suggesting that the co-invading symbiont belongs to the genus 44 
Durusdinium. Establishing these genomic and symbiotic resources at an early stage of invasion provides a 45 
critical foundation for monitoring range expansion, investigating host–symbiont evolutionary dynamics, 46 
and identifying genomic features that may underlie the invasive potential of X. umbellata as it spreads 47 
across Puerto Rico and the wider Caribbean. 48 
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 65 

1. Introduction 66 

The octocoral Xenia umbellata Lamarck, 1816 is a common component of Red Sea coral reef 67 
ecosystems, known for its high tolerance to environmental stressors and rapid proliferation, facilitated by 68 
whole-body regeneration from even a single tentacle (Halász et al., 2019; Nadir et al., 2023; Mezger et al., 69 
2022). This remarkable regenerative capacity has also established X. umbellata as an emerging model 70 
system for studying regeneration (Nadir et al., 2023). In October 2023, initial reports from recreational 71 
divers documented the onset of a Xenia umbellata invasion -- originally misidentified as Unomia 72 
stolonifera, which is actively spreading in Venezuela (Ruiz-Allais et al., 2014, 2021) -- on Puerto Rico’s 73 
already degraded reefs, raising concerns about the species’ potential to take over ecosystems both local and 74 
in neighboring islands with little natural resistance (Toledo-Rodriguez et al., 2025). Capable of colonizing 75 
available substrate (i.e., coral rubble, rocky substrate, and bare sand) and overgrowing native benthic 76 
organisms like ecosystem engineering stony corals and sponges (Figure 1), significant effort from Puerto 77 
Rico’s Department of Natural and Environmental Resources Emergency Response Unit has been dedicated 78 
to tracking and eradicating X. umbellata patches, yet new patches continue to be found in shallow (<30 ft) 79 
and deeper reefs (up to 55 m). As the region prepares for the long-term management of X. umbellata’s 80 
potential impact on Caribbean reefs, a lack of genomic and microbial resources for this species remains. 81 
Such genomic data, especially generated during the early phase of the invasion, can provide critical insights 82 
into its invasion dynamics and establish a foundation for future research. 83 

 84 
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Figure 1. Field images of Xenia umbellata on reefs in La Parguera, Puerto Rico. (A) Close-up view 85 
highlighting polyp morphology. (B) X. umbellata colonizing substrate surrounding and within a giant 86 
barrel sponge (Xestospongia muta). (C) X. umbellata encroaching on the stony coral Orbicella faveolata. 87 
All photos by Daniel A. Toledo-Rodriguez. 88 

 Invasion genomics provides an effective evolutionary framework for investigating the invasion 89 
process, from potential introduction pathways to the establishment, spread, adaptation, and population 90 
dynamics of the invader (Lee, 2002; McGaughran et al., 2024; North et al., 2021). For example, by 91 
characterizing an introduced species’ genome, investigators can identify signatures of invasiveness, such as 92 
standing genetic variation (e.g., heterozygosity or admixture) or structural variation (e.g., gene 93 
duplications), which may facilitate rapid adaptation to the novel environment (Hahn & Rieseberg, 2017; 94 
Makino & Kawata, 2019; McGaughran et al., 2024; O’Donnell et al., 2014; Wu et al., 2019). Such genomic 95 
knowledge can help predict invasive potential, forecast invasion success, and support management priority 96 
setting in efforts to impede spread (McGaughran et al., 2024). Moreover, genomic resources generated 97 
during the early phases of an invasion provide critical baseline data for reconstructing invasion histories 98 
and identifying the genomic mechanisms of adaptation underlying the spread. While this information is 99 
typically generated only for the invading metazoan, it is equally important to characterize its associated 100 
microbial symbionts, which may influence the success and adaptability of the invader. 101 

 Xenia umbellata, like all cnidarians, harbors diverse microbial symbionts inclusive of 102 
dinoflagellates (Family Symbiodiniaceae), bacteria, archaea, fungi, and viruses, collectively referred to as 103 
the holobiont (Stévenne et al., 2021). The acquisition or loss of symbiotic partners can strongly influence 104 
host physiology by conferring new traits that may alter holobiont ecology and fitness (Bordenstein & Theis, 105 
2015; Hussa & Goodrich-Blair, 2013; Pita et al., 2016). For example, in cnidarians, the identity of 106 
associated Symbiodiniaceae has been shown to influence host resilience to abiotic and biotic stressors, 107 
emphasizing the role of microbial symbionts in driving environmental adaptation and, ultimately, invasion 108 
success (Wang et al., 2023; Newkirk et al., 2020; Stévenne et al., 2021). Therefore, it is imperative to 109 
investigate the microbial symbionts of invaders and track changes in their communities as factors shaping 110 
invasion outcomes. In addition, these invasive microbial symbionts may directly affect native species by 111 
displacing resident symbionts or acting parasitically (Bojko et al., 2021). Considering both the host genome 112 
and its microbial symbionts as an integrated “hologenome” (Bordenstein & Theis, 2015) provides a 113 
powerful framework for understanding how invasions are mediated at the genomic and ecological levels 114 
and supports the need for hologenomic resources to guide future studies and management strategies. 115 

 Here, we describe the production of early-phase hologenomic resources for Xenia umbellata 116 
invading Puerto Rico’s coastal waters. Using deep metagenomic sequencing, we generated the first high-117 
quality draft genome of X. umbellata and characterized the taxonomy of its associated Symbiodiniaceae. 118 
These resources were derived from a type specimen collected within six months of the initial report of the 119 
invasion. By integrating host and symbiont data, this study provides the first hologenomic reference for X. 120 
umbellata, establishing a foundation for both scientific investigation and management applications. 121 

2. Data description 122 

2.1 Sampling, DNA extraction, and Sequencing 123 

 Several polyps from a Xenia umbellata patch located in the La Parguera Natural Reserve at a depth 124 
of 21.6 m were carefully collected with tweezers on SCUBA and placed in a 50 mL tube in March 2024 125 
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(Table 1). The tissue sample in the 50 mL tube containing ambient seawater was then transferred to the lab 126 
on ice. Once in the lab, the ambient seawater was removed from the 50 mL tube. The polyps in the original 127 
50 mL tube were then immediately placed in -80 ºC for storage until DNA extraction. DNA extraction was 128 
performed using the ZymoBIOMICS DNA/RNA Miniprep kit (Zymo Research) with minor modifications 129 
to the provider’s protocols (Veglia and Watkins 2025). Extracted DNA was sequenced on the Illumina 130 
NovaSeq 6000 platform using 150 bp paired-end reads, following library preparation with the Illumina 131 
DNA PCR-Free Prep kit. Sequencing was performed with a target output of 40 Gb, corresponding to 132 
approximately 133 million paired-end 150 bp reads (~266 million total reads). Sample quality was assessed 133 
using Tapestation and Nanodrop, and library quality was evaluated using Tapestation and qPCR. DNA input 134 
met provider requirements: ≥10 ng/μL concentration, ≥0.1 μg total quantity, 260/280 ratio of 1.5-2.2, and 135 
DIN value between 6.0-10.0. 136 

Table 1. MIxS data description for the Xenia umbellata collected from Puerto Rico coral reefs. 137 

Item Definition 

General feature of 

classification  

Classification 

Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Cnidaria; Anthozoa; 

Octocorallia; Alcyonacea; Xeniidae; Xenia; Xenia umbellata 

Investigation type Eukaryote draft genome assembly 

Project name Xenia umbellata early Puerto Rico invasion hologenomic resources  

Environment Coral reef 

Geographic location Caribbean Sea; Puerto Rico; Lajas, La Parguera Natural Reserve; UR2 

Latitude, longitude 17.895780 °N, -66.973600 °W 

Collection date 3/20/2024 

Environment properties Insular shelf edge: spur and groove 

Depth 21.6 m 

Collector Daniel A. Toledo-Rodriguez 

Sequencing 
 

Sequencing method Illumina NovaSeq 6000; paired-end reads (2x150) 

Assembly method De novo assembly 

Program SPAdes v4.0.0 

Finishing strategy Scaffolding with RagTag v2.1.0 

Accessibility  

DDBJ/ENA/GenBank 

SAMN50581036; PRJNA1304975; 

GCA_021976095.1 

 138 

2.2 Sequence processing and assembly 139 

 Sequencing resulted in 278,081,250 raw reads with 96% of bases having a phred score >20. Raw 140 
reads were then processed and cleaned with the program fastp (v0.23.2; Chen et al., 2018) resulting 141 
272,355,896 high quality cleaned reads. High quality reads were assembled with the program SPAdes 142 
(v4.0.0; Prjibelski et al., 2020) using the metaSPAdes algorithm (Nurk et al., 2017) producing 1,092,378 143 
scaffolds. The metagenome assembly provided a peak into the X. umbellata hologenome containing 144 
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scaffolds sources from the xeniid metazoan as well as all its microbial symbionts inclusive of the 145 
endosymbiotic dinoflagellates within Family Symbiodiniaceae.  146 

2.3 Xenia umbellata Genome Assembly, Assessment, and Annotation 147 

 To extract all xeniid scaffolds from the metagenome assembly, BLASTn (Camacho et al., 2009) 148 
was used to align contigs against a chromosome-level genome assembly of Ovabunda sp. (Hu et al., 149 
2020). The genome assembly was originally labeled as Xenia sp., however it was later confirmed to be 150 
Ovabunda sp. (pers. comm. Catherine McFadden), a closely related genus. All sequences exhibiting 151 
>95% nucleotide identity and alignment lengths >100 bp were retained as putative xeniid scaffolds. On 152 
the remaining sequences, an additional scan for anthozoan-like scaffolds was performed using the 153 
program CAT (von Meijenfeldt et al., 2019) and the CAT_nr database (v20241212). All likely xeniid 154 
sequences (n=132,376), identified through BLASTn and/or CAT, were pooled into a single fasta file. The 155 
program RagTag (v2.1.0; Alonge et al., 2022) was then used to further scaffold these sequences using the 156 
chromosome-level Ovabunda genome assembly (Hu et al., 2020) as a reference. Next, the scaffolded 157 
assembly was then assessed for any contaminants (e.g., mitochondrial sequences, non-target organism 158 
sequences) to be removed using NCBI’s Foreign Contamination Screen (Astashyn et al., 2024). Finally, 159 
identified contaminants were removed and length filtering was then performed using the ‘clean’ function 160 
of the program funannotate (v1.8.17;Palmer & Stajich, 2020) resulting in a final assembly of 27,739 161 
sequences with lengths greater than 500 nucleotides. Assembly quality was assessed using QUAST 162 
(v5.2.0; Mikheenko et al., 2023) revealing that the final assembly had a total length of 151,140,580 bp 163 
and an N50 of 6,477,837 bp (Figure 2). Genome completeness was assessed using BUSCO (v5.8.0; 164 
Manni et al., 2021) with the anthozoan lineage database (anthozoa_odb12.2025-07-01). The analysis 165 
revealed that 91.4% of BUSCOs were complete, comprising 89.9% single-copy and 1.5% duplicated 166 
genes. An additional 3.9% were fragmented and 4.7% were missing. Taken together, the QUAST and 167 
BUSCO results indicate high contiguity and completeness of the Xenia umbellata genome assembly. 168 
Next, we used the stats.sh program within the BBMAP tool kit (v39.15; Bushnell, 2014) to assess base 169 
content of the genome assembly. The genome assembly exhibited an overall base composition of 32.60% 170 
adenine (A), 32.82% thymine (T), 17.29% cytosine (C), and 17.29% guanine (G), with a GC content of 171 
34.58% and 1.84% ambiguous bases (Ns), likely introduced during scaffolding and is expected for a draft 172 
genome assembled from short-read data. Further sequencing or long-read integration would likely 173 
improve contiguity, but this assembly represents a high-quality and biologically informative first 174 
reference genome for Xenia umbellata.  175 

Prior to annotation, repetitive elements in the X. umbellata assembly were identified and 176 
classified de novo using RepeatModeler (v 2.0.7; Flynn et al., 2020). Identified repeats were then 177 
quantified and soft-masked assembly-wide with RepeatMasker (v4.2.1; Smit et al., 2013–2015) using 178 
both the custom library and the Dfam/RepBase databases as references. The Xenia umbellata genome was 179 
then annotated with the funannotate (v1.8.17) pipeline. Genes prediction was done with the ab initio 180 
predictors AUGUSTUS (v3.5.0; Stanke et al., 2006), GeneMark-ES (v4.71; Ter-Hovhannisyan et al., 181 
2008), SNAP (v2006-07-28; Korf, 2004), and GlimmerHMM (v3.0.4; Majoros et al., 2004) and protein 182 
homology evidence generated by aligning NCBI RefSeq invertebrate proteins (downloaded July 2025) to 183 
the soft-masked genome with DIAMOND (Buchfink et al., 2015) and Exonerate (Slater & Birney, 2005). 184 
Consensus gene models were generated with EVidenceModeler (Haas et al., 2008), and functional 185 
annotation incorporated InterProScan (Jones et al., 2014), Pfam (Mistry et al., 2021), UniProt 186 
(v2025_03), MEROPS (v12.5; Rawlings et al., 2018), and dbCAN (v13; Zheng et al., 2023). 187 
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 Annotation of the Xenia umbellata genome with Funannotate predicted 21,596 protein-coding 188 
genes across 20,844 mRNAs and 752 tRNAs, with an average gene length of ~3.1 kb and an average 189 
protein length of 399 aa. The annotation comprised 142,785 exons (16,289 multi-exon and 4,555 single-190 
exon transcripts). Functional annotation assigned putative functions to: 11,909 genes with GO terms, 191 
14,275 InterProScan annotations, 11,452 Pfam domains, 692 MEROPS proteases, and 197 CAZymes. In 192 
addition, 1,143 genes were assigned common names through similarity to UniProt proteins. 193 

 194 

Figure 2. BlobToolKit (v4.4.5; Challis et al., 2020) snail plot illustrating scaffold metrics, completeness, 195 
and nucleotide composition of the draft genome assembly. The assembly comprises 27,739 scaffolds with 196 
a total length of 151.14 Mbp, a maximum scaffold size of 13 Mbp, an N50 of 6.48 Mbp, and an N90 of 197 
1.45 kbp. BUSCO analysis against the anthozoa_odb12 dataset (n = 3,649 genes) recovered 91.4% 198 
complete (1.48% duplicated), 3.89% fragmented, and 8.63% missing orthologs, indicating high 199 
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completeness. The genome has a GC content of 33.9%, AT content of 64.1%, and 2.03% ambiguous 200 
bases. 201 

2.4 Pairwise Genome Comparison with a Closely Related Ovabunda Species 202 

 Pairwise genome comparisons using PyANI-plus (ANIb method; v0.0.1; Pritchard et al., 2015) 203 
yielded an Average Nucleotide Identity (ANI) of 93.2% (X. umbellata aligned to Ovabunda sp.) and 204 
92.1% (Ovabunda sp. aligned to  X. umbellata), with a mean ANI of 92.7%. Alignment coverage was 205 
asymmetric, with 70.8% of the X. umbellata draft genome (107,045,860 bp) aligning to Ovabunda sp. and 206 
63.6% of the Ovabunda sp. assembly (141,702,152 bp) aligning to X. umbellata. Transformed ANI 207 
(tANI) values were 0.415 and 0.535, respectively (mean = 0.475), consistent with substantial genomic 208 
divergence. These results indicate that while a large portion of the genome (~64–71%) is shared at ~93% 209 
identity, considerable lineage-specific sequence divergence remains, consistent with intergeneric genomic 210 
differentiation. Next, we calculated the estimated X. umbellata genome size using the program 211 
GenomeScope2 (v2.0; Ranallo-Benavidez et al., 2020). The kmer histogram file used for GenomeScope2 212 
analyses was generated with the program jellyfish (v2.3.1; Marçais & Kingsford, 2011) with a “-m” equal 213 
to 21. GenomeScope analyses using 21-mer frequencies estimated the X. umbellata genome at ~171.7 214 
(171.6-171.9) Mbp (R²=93.15%). The estimated 171.7 Mbp genome size is 25.3 Mbp shorter than the 215 
calculated genome size for the related Ovabunda sp. genome. This observed difference is likely driven by 216 
repeat content (the “repeatome”), as GenomeScope estimated that the X. umbellata genome is 217 
approximately 38.1% repetitive (≈ 66 Mbp). In contrast, the Ovabunda sp. genome is 46.2% repetitive 218 
(≈ 91 Mbp) (Hu et al., 2020).  219 

Furthermore, repeat region analyses identified 27.8% of the X. umbellata assembly (~42.1 Mbp) 220 
as repetitive (26.97% interspersed repeats), dominated by unclassified elements (20.6%). Classified 221 
transposable elements comprised 6.4% of the genome (LINEs 2.6%, LTRs 1.5%, DNA transposons 222 
2.3%). Transposable element expansions are a major driver of genomic divergence between species and 223 
have been reported to facilitate genome evolution in diverse eukaryotes (Castro et al., 2024; Pluess et al., 224 
2016; Shah et al., 2020). Future efforts should build on this baseline characterization of the X. umbellata 225 
repeatome to assess changes in element abundance and diversity that may signal genomic adaptations to 226 
novel environments during its continued spread (Lee & Wang, 2018; Mérel et al., 2021). 227 

2.5 X. umbellata Genome Heterozygosity: A Clue of Invasion Origin? 228 

 Genome-wide heterozygosity is hypothesized to provide insight into the adaptive and invasive 229 
potential of species (Kołodziejczyk et al., 2025). For example, the marbled crayfish (Procambarus 230 
virginalis), an emerging invasive species, possesses a triploid genome with high heterozygosity that is 231 
thought to facilitate its ecological success and spread (Gutekunst et al., 2018). In this context, establishing 232 
genome-wide heterozygosity for a specimen of X. umbellata collected during the early phase of an 233 
invasion provides a useful baseline for future comparisons, offers preliminary insight into adaptive 234 
capacity, and may help infer source populations: high diversity could indicate a wild origin, whereas 235 
reduced diversity might reflect bottlenecks associated with aquaculture or the aquarium trade. 236 
GenomeScope2 calculated the heterozygosity of the X. umbellata early-invasion genome to be 237 
approximately ~1.3%. This value falls within the range that has been previously reported for cnidarians 238 
(0.79-1.96%; Locatelli & Baums, 2024; Shinzato et al., 2021; Stephens et al., 2022; Young et al., 2024; 239 
Yu et al., 2022) and is slightly higher than values reported for octocorals (0.73-1.2%; Ip et al., 2023; 240 
Ledoux et al., 2025). While this is a measurement of a single individual, it preliminarily suggests that the 241 
X. umbellata population introduced to Puerto Rican reefs may retain relatively high genomic diversity, 242 
consistent with high adaptive potential and a wild origin. 243 
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2.6 Characterization of Xenia umbellata dinoflagellate symbionts 244 

 An additional goal of this study was to provide genomic information/resources for the 245 
dinoflagellate symbionts (Family Symbiodiniaceae) associated with Xenia umbellata in Puerto Rico. 246 
Having this baseline knowledge is critical for tracking holobiont adaptation to the region via symbiont 247 
switching throughout X. umbellata’s continued spread (Creed et al., 2022; Sørensen et al., 2021). To 248 
conservatively identify Symbiodiniaceae scaffolds from the metagenome, we first aligned non-xeniid 249 
sequences to a Symbiodiniaceae reference database containing all publicly available genomes on NCBI 250 
(as of March 2025) using minimap2. Candidate scaffolds were then validated by re-alignment with 251 
BLASTn to the same database, with non-aligning sequences removed. Validated scaffolds were assigned 252 
genus-level taxonomy according to the best-matching reference genome. In total, 555,596 scaffolds, 253 
ranging in length from 200 to 25,187 bp, were identified as Symbiodiniaceae, with nucleotide similarities 254 
ranging from 95% to 100%. Of which, 555,520 (99.9% of scaffolds) aligned to the representative 255 
genomes from genus Durusdinium, suggesting the co-invading symbiont belongs to genus Durusdinium. 256 
Previous work reported Xenia umbellata in symbiosis with Durusdinium, but interestingly only at one 257 
shallow site in Ras Mohammed in the Red Sea, which was the only one of ten Red Sea sites where this 258 
association was observed (Osman et al., 2020). Our observation of Durusdinium as the dominant 259 
symbiont in this Puerto Rican individual suggests that X. umbellata has retained its original symbiosis 260 
during invasion. This finding provides critical baseline knowledge of the X. umbellata–Durusdinium 261 
association, enabling future efforts to track holobiont adaptation and monitor the spread of invasive 262 
symbionts. 263 
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