Running head: Xenia umbellata draft genomic resources Early Invasion Genomic Resources for Xenia umbellata (Native to the Red Sea) and its Associated **Dinoflagellate Symbionts in Puerto Rico** Alex J. Veglia^{1,2}, Daniel A. Toledo-Rodriguez^{2,3}, Joyah A. Watkins⁴, and Nikolaos V. Schizas³ ¹Department of Biology, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA ²EcoAzul, HC01 Box 4729, Lajas, PR 00667, USA ³Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA ⁴BioSciences Department, Rice University, 6100 Main St, Houston, TX 77005, USA Corresponding Author: Alex J. Veglia, alex.veglia@upr.edu Keywords: Pulse coral, Caribbean, Hologenome, Symbiodiniaceae, Repeatome, Puerto Rico

30 Abstract

The frequency of xeniid soft coral invasions on Caribbean coral reefs is increasing, with three alien species reported so far. Xenia umbellata (Anthozoa, Octocorallia, Malacalcyonacea, Xeniidae), native to the Red Sea, was first reported on Puerto Rico coral reefs in October 2023. Here, we present the first draft genome assembly and early-invasion genomic resources for the rapidly spreading X. umbellata and its dinoflagellate symbiont (Family Symbiodiniaceae) produced from a specimen collected five months after the initial report. Using deep Illumina metagenomic sequencing (~243X coverage), we obtained ~272.4 million high-quality 150 bp reads. The X. umbellata draft genome assembly is 151.14 Mbp in length, composed of 27,739 scaffolds, with an N50 of 6,477,837 bp. GenomeScope2 predicted a haploid genome size of 171.6-171.9 Mbp and calculated a heterozygosity of 1.27-1.29%. This suggests that the assembly captures ~88% of the X. umbellata genome, and the relatively high heterozygosity may indicate introduction from a genetically diverse wild population. Completeness was further supported by BUSCO analysis (anthozoa odb12 lineage), which identified 91.4% complete and 3.9% fragmented BUSCOs. Furthermore, 555,596 sequences were identified as belonging to Symbiodiniaceae, of which 99.97% (n= 555,520) aligned to a *Durusdinium* reference genome, suggesting that the co-invading symbiont belongs to the genus Durusdinium. Establishing these genomic and symbiotic resources at an early stage of invasion provides a critical foundation for monitoring range expansion, investigating host-symbiont evolutionary dynamics, and identifying genomic features that may underlie the invasive potential of X. umbellata as it spreads across Puerto Rico and the wider Caribbean.

1. Introduction

65

66

67

68

69 70

71 72

73

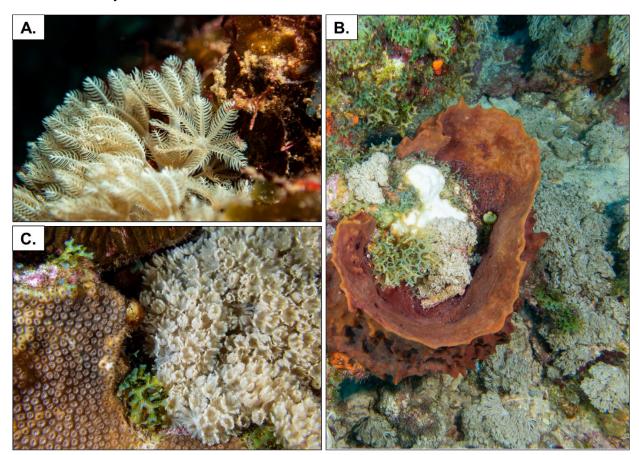
74

75

76

77

78


79 80

81 82

83

84

The octocoral Xenia umbellata Lamarck, 1816 is a common component of Red Sea coral reef ecosystems, known for its high tolerance to environmental stressors and rapid proliferation, facilitated by whole-body regeneration from even a single tentacle (Halász et al., 2019; Nadir et al., 2023; Mezger et al., 2022). This remarkable regenerative capacity has also established X. umbellata as an emerging model system for studying regeneration (Nadir et al., 2023). In October 2023, initial reports from recreational divers documented the onset of a Xenia umbellata invasion -- originally misidentified as Unomia stolonifera, which is actively spreading in Venezuela (Ruiz-Allais et al., 2014, 2021) -- on Puerto Rico's already degraded reefs, raising concerns about the species' potential to take over ecosystems both local and in neighboring islands with little natural resistance (Toledo-Rodriguez et al., 2025). Capable of colonizing available substrate (i.e., coral rubble, rocky substrate, and bare sand) and overgrowing native benthic organisms like ecosystem engineering stony corals and sponges (Figure 1), significant effort from Puerto Rico's Department of Natural and Environmental Resources Emergency Response Unit has been dedicated to tracking and eradicating X. umbellata patches, yet new patches continue to be found in shallow (<30 ft) and deeper reefs (up to 55 m). As the region prepares for the long-term management of X. umbellata's potential impact on Caribbean reefs, a lack of genomic and microbial resources for this species remains. Such genomic data, especially generated during the early phase of the invasion, can provide critical insights into its invasion dynamics and establish a foundation for future research.

Figure 1. Field images of *Xenia umbellata* on reefs in La Parguera, Puerto Rico. (A) Close-up view highlighting polyp morphology. (B) *X. umbellata* colonizing substrate surrounding and within a giant barrel sponge (*Xestospongia muta*). (C) *X. umbellata* encroaching on the stony coral *Orbicella faveolata*. All photos by Daniel A. Toledo-Rodriguez.

Invasion genomics provides an effective evolutionary framework for investigating the invasion process, from potential introduction pathways to the establishment, spread, adaptation, and population dynamics of the invader (Lee, 2002; McGaughran et al., 2024; North et al., 2021). For example, by characterizing an introduced species' genome, investigators can identify signatures of invasiveness, such as standing genetic variation (e.g., heterozygosity or admixture) or structural variation (e.g., gene duplications), which may facilitate rapid adaptation to the novel environment (Hahn & Rieseberg, 2017; Makino & Kawata, 2019; McGaughran et al., 2024; O'Donnell et al., 2014; Wu et al., 2019). Such genomic knowledge can help predict invasive potential, forecast invasion success, and support management priority setting in efforts to impede spread (McGaughran et al., 2024). Moreover, genomic resources generated during the early phases of an invasion provide critical baseline data for reconstructing invasion histories and identifying the genomic mechanisms of adaptation underlying the spread. While this information is typically generated only for the invading metazoan, it is equally important to characterize its associated microbial symbionts, which may influence the success and adaptability of the invader.

Xenia umbellata, like all cnidarians, harbors diverse microbial symbionts inclusive of dinoflagellates (Family Symbiodiniaceae), bacteria, archaea, fungi, and viruses, collectively referred to as the holobiont (Stévenne et al., 2021). The acquisition or loss of symbiotic partners can strongly influence host physiology by conferring new traits that may alter holobiont ecology and fitness (Bordenstein & Theis, 2015; Hussa & Goodrich-Blair, 2013; Pita et al., 2016). For example, in cnidarians, the identity of associated Symbiodiniaceae has been shown to influence host resilience to abiotic and biotic stressors, emphasizing the role of microbial symbionts in driving environmental adaptation and, ultimately, invasion success (Wang et al., 2023; Newkirk et al., 2020; Stévenne et al., 2021). Therefore, it is imperative to investigate the microbial symbionts of invaders and track changes in their communities as factors shaping invasion outcomes. In addition, these invasive microbial symbionts may directly affect native species by displacing resident symbionts or acting parasitically (Bojko et al., 2021). Considering both the host genome and its microbial symbionts as an integrated "hologenome" (Bordenstein & Theis, 2015) provides a powerful framework for understanding how invasions are mediated at the genomic and ecological levels and supports the need for hologenomic resources to guide future studies and management strategies.

Here, we describe the production of early-phase hologenomic resources for *Xenia umbellata* invading Puerto Rico's coastal waters. Using deep metagenomic sequencing, we generated the first high-quality draft genome of *X. umbellata* and characterized the taxonomy of its associated Symbiodiniaceae. These resources were derived from a type specimen collected within six months of the initial report of the invasion. By integrating host and symbiont data, this study provides the first hologenomic reference for *X. umbellata*, establishing a foundation for both scientific investigation and management applications.

2. Data description

2.1 Sampling, DNA extraction, and Sequencing

Several polyps from a *Xenia umbellata* patch located in the La Parguera Natural Reserve at a depth of 21.6 m were carefully collected with tweezers on SCUBA and placed in a 50 mL tube in March 2024

(Table 1). The tissue sample in the 50 mL tube containing ambient seawater was then transferred to the lab on ice. Once in the lab, the ambient seawater was removed from the 50 mL tube. The polyps in the original 50 mL tube were then immediately placed in -80 °C for storage until DNA extraction. DNA extraction was performed using the ZymoBIOMICS DNA/RNA Miniprep kit (Zymo Research) with minor modifications to the provider's protocols (Veglia and Watkins 2025). Extracted DNA was sequenced on the Illumina NovaSeq 6000 platform using 150 bp paired-end reads, following library preparation with the Illumina DNA PCR-Free Prep kit. Sequencing was performed with a target output of 40 Gb, corresponding to approximately 133 million paired-end 150 bp reads (~266 million total reads). Sample quality was assessed using Tapestation and Nanodrop, and library quality was evaluated using Tapestation and qPCR. DNA input met provider requirements: \geq 10 ng/ μ L concentration, \geq 0.1 μ g total quantity, 260/280 ratio of 1.5-2.2, and DIN value between 6.0-10.0.

Table 1. MIxS data description for the Xenia umbellata collected from Puerto Rico coral reefs.

Item	Definition
General feature of	
classification	
Classification	Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Cnidaria; Anthozoa; Octocorallia; Alcyonacea; Xeniidae; <i>Xenia; Xenia umbellata</i>
Investigation type	Eukaryote draft genome assembly
Project name	Xenia umbellata early Puerto Rico invasion hologenomic resources
Environment	Coral reef
Geographic location	Caribbean Sea; Puerto Rico; Lajas, La Parguera Natural Reserve; UR2
Latitude, longitude	17.895780 °N, -66.973600 °W
Collection date	3/20/2024
Environment properties	Insular shelf edge: spur and groove
Depth	21.6 m
Collector	Daniel A. Toledo-Rodriguez
Sequencing	
Sequencing method	Illumina NovaSeq 6000; paired-end reads (2x150)
Assembly method	De novo assembly
Program	SPAdes v4.0.0
Finishing strategy	Scaffolding with RagTag v2.1.0
Accessibility	
	SAMN50581036; PRJNA1304975;
DDBJ/ENA/GenBank	GCA_021976095.1

2.2 Sequence processing and assembly

Sequencing resulted in 278,081,250 raw reads with 96% of bases having a phred score >20. Raw reads were then processed and cleaned with the program fastp (v0.23.2; Chen et al., 2018) resulting 272,355,896 high quality cleaned reads. High quality reads were assembled with the program SPAdes (v4.0.0; Prjibelski et al., 2020) using the metaSPAdes algorithm (Nurk et al., 2017) producing 1,092,378 scaffolds. The metagenome assembly provided a peak into the *X. umbellata* hologenome containing

scaffolds sources from the xeniid metazoan as well as all its microbial symbionts inclusive of the endosymbiotic dinoflagellates within Family Symbiodiniaceae.

2.3 Xenia umbellata Genome Assembly, Assessment, and Annotation

145

146

147

148

149

150

151

152

153

154

155

156

157158

159 160

161

162

163 164

165

166167

168

169 170

171

172173

174

175

176

177

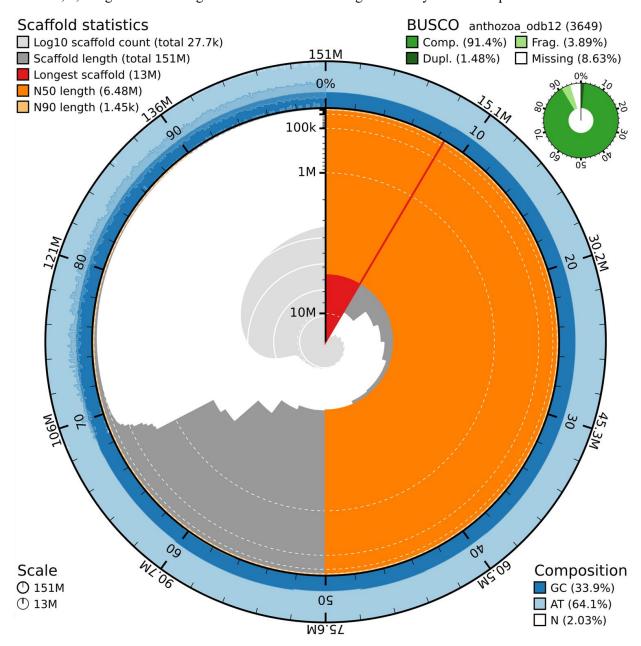
178179

180 181

182

183

184 185


186

187

To extract all xeniid scaffolds from the metagenome assembly, BLASTn (Camacho et al., 2009) was used to align contigs against a chromosome-level genome assembly of Ovabunda sp. (Hu et al., 2020). The genome assembly was originally labeled as Xenia sp., however it was later confirmed to be Ovabunda sp. (pers. comm. Catherine McFadden), a closely related genus. All sequences exhibiting >95% nucleotide identity and alignment lengths >100 bp were retained as putative xeniid scaffolds. On the remaining sequences, an additional scan for anthozoan-like scaffolds was performed using the program CAT (von Meijenfeldt et al., 2019) and the CAT nr database (v20241212). All likely xeniid sequences (n=132,376), identified through BLASTn and/or CAT, were pooled into a single fasta file. The program RagTag (v2.1.0; Alonge et al., 2022) was then used to further scaffold these sequences using the chromosome-level Ovabunda genome assembly (Hu et al., 2020) as a reference. Next, the scaffolded assembly was then assessed for any contaminants (e.g., mitochondrial sequences, non-target organism sequences) to be removed using NCBI's Foreign Contamination Screen (Astashyn et al., 2024). Finally, identified contaminants were removed and length filtering was then performed using the 'clean' function of the program funannotate (v1.8.17; Palmer & Stajich, 2020) resulting in a final assembly of 27,739 sequences with lengths greater than 500 nucleotides. Assembly quality was assessed using QUAST (v5.2.0; Mikheenko et al., 2023) revealing that the final assembly had a total length of 151,140,580 bp and an N50 of 6.477,837 bp (Figure 2). Genome completeness was assessed using BUSCO (v5.8.0; Manni et al., 2021) with the anthozoan lineage database (anthozoa odb12.2025-07-01). The analysis revealed that 91.4% of BUSCOs were complete, comprising 89.9% single-copy and 1.5% duplicated genes. An additional 3.9% were fragmented and 4.7% were missing. Taken together, the QUAST and BUSCO results indicate high contiguity and completeness of the *Xenia umbellata* genome assembly. Next, we used the stats.sh program within the BBMAP tool kit (v39.15; Bushnell, 2014) to assess base content of the genome assembly. The genome assembly exhibited an overall base composition of 32.60% adenine (A), 32.82% thymine (T), 17.29% cytosine (C), and 17.29% guanine (G), with a GC content of 34.58% and 1.84% ambiguous bases (Ns), likely introduced during scaffolding and is expected for a draft genome assembled from short-read data. Further sequencing or long-read integration would likely improve contiguity, but this assembly represents a high-quality and biologically informative first reference genome for Xenia umbellata.

Prior to annotation, repetitive elements in the *X. umbellata* assembly were identified and classified *de novo* using RepeatModeler (v 2.0.7; Flynn et al., 2020). Identified repeats were then quantified and soft-masked assembly-wide with RepeatMasker (v4.2.1; Smit et al., 2013–2015) using both the custom library and the Dfam/RepBase databases as references. The *Xenia umbellata* genome was then annotated with the funannotate (v1.8.17) pipeline. Genes prediction was done with the *ab initio* predictors AUGUSTUS (v3.5.0; Stanke et al., 2006), GeneMark-ES (v4.71; Ter-Hovhannisyan et al., 2008), SNAP (v2006-07-28; Korf, 2004), and GlimmerHMM (v3.0.4; Majoros et al., 2004) and protein homology evidence generated by aligning NCBI RefSeq invertebrate proteins (downloaded July 2025) to the soft-masked genome with DIAMOND (Buchfink et al., 2015) and Exonerate (Slater & Birney, 2005). Consensus gene models were generated with EVidenceModeler (Haas et al., 2008), and functional annotation incorporated InterProScan (Jones et al., 2014), Pfam (Mistry et al., 2021), UniProt (v2025 03), MEROPS (v12.5; Rawlings et al., 2018), and dbCAN (v13; Zheng et al., 2023).

Annotation of the *Xenia umbellata* genome with Funannotate predicted 21,596 protein-coding genes across 20,844 mRNAs and 752 tRNAs, with an average gene length of ~3.1 kb and an average protein length of 399 aa. The annotation comprised 142,785 exons (16,289 multi-exon and 4,555 single-exon transcripts). Functional annotation assigned putative functions to: 11,909 genes with GO terms, 14,275 InterProScan annotations, 11,452 Pfam domains, 692 MEROPS proteases, and 197 CAZymes. In addition, 1,143 genes were assigned common names through similarity to UniProt proteins.

Figure 2. BlobToolKit (v4.4.5; Challis et al., 2020) snail plot illustrating scaffold metrics, completeness, and nucleotide composition of the draft genome assembly. The assembly comprises 27,739 scaffolds with a total length of 151.14 Mbp, a maximum scaffold size of 13 Mbp, an N50 of 6.48 Mbp, and an N90 of 1.45 kbp. BUSCO analysis against the anthozoa_odb12 dataset (n = 3,649 genes) recovered 91.4% complete (1.48% duplicated), 3.89% fragmented, and 8.63% missing orthologs, indicating high

completeness. The genome has a GC content of 33.9%, AT content of 64.1%, and 2.03% ambiguous bases.

2.4 Pairwise Genome Comparison with a Closely Related Ovabunda Species

Pairwise genome comparisons using PyANI-plus (ANIb method; v0.0.1; Pritchard et al., 2015) yielded an Average Nucleotide Identity (ANI) of 93.2% (X. umbellata aligned to Ovabunda sp.) and 92.1% (Ovabunda sp. aligned to X. umbellata), with a mean ANI of 92.7%. Alignment coverage was asymmetric, with 70.8% of the X. umbellata draft genome (107,045,860 bp) aligning to Ovabunda sp. and 63.6% of the Ovabunda sp. assembly (141,702,152 bp) aligning to X. umbellata. Transformed ANI (tANI) values were 0.415 and 0.535, respectively (mean = 0.475), consistent with substantial genomic divergence. These results indicate that while a large portion of the genome (~64–71%) is shared at ~93% identity, considerable lineage-specific sequence divergence remains, consistent with intergeneric genomic differentiation. Next, we calculated the estimated X. umbellata genome size using the program GenomeScope2 (v2.0; Ranallo-Benavidez et al., 2020). The kmer histogram file used for GenomeScope2 analyses was generated with the program jellyfish (v2.3.1; Marçais & Kingsford, 2011) with a "-m" equal to 21. GenomeScope analyses using 21-mer frequencies estimated the X. umbellata genome at ~171.7 (171.6-171.9) Mbp (R²=93.15%). The estimated 171.7 Mbp genome size is 25.3 Mbp shorter than the calculated genome size for the related Ovabunda sp. genome. This observed difference is likely driven by repeat content (the "repeatome"), as GenomeScope estimated that the X. umbellata genome is approximately 38.1% repetitive ($\approx 66 \,\mathrm{Mbp}$). In contrast, the *Ovabunda* sp. genome is 46.2% repetitive $(\approx 91 \text{ Mbp})$ (Hu et al., 2020).

Furthermore, repeat region analyses identified 27.8% of the *X. umbellata* assembly (~42.1 Mbp) as repetitive (26.97% interspersed repeats), dominated by unclassified elements (20.6%). Classified transposable elements comprised 6.4% of the genome (LINEs 2.6%, LTRs 1.5%, DNA transposons 2.3%). Transposable element expansions are a major driver of genomic divergence between species and have been reported to facilitate genome evolution in diverse eukaryotes (Castro et al., 2024; Pluess et al., 2016; Shah et al., 2020). Future efforts should build on this baseline characterization of the *X. umbellata* repeatome to assess changes in element abundance and diversity that may signal genomic adaptations to novel environments during its continued spread (Lee & Wang, 2018; Mérel et al., 2021).

2.5 X. umbellata Genome Heterozygosity: A Clue of Invasion Origin?

Genome-wide heterozygosity is hypothesized to provide insight into the adaptive and invasive potential of species (Kołodziejczyk et al., 2025). For example, the marbled crayfish (*Procambarus virginalis*), an emerging invasive species, possesses a triploid genome with high heterozygosity that is thought to facilitate its ecological success and spread (Gutekunst et al., 2018). In this context, establishing genome-wide heterozygosity for a specimen of *X. umbellata* collected during the early phase of an invasion provides a useful baseline for future comparisons, offers preliminary insight into adaptive capacity, and may help infer source populations: high diversity could indicate a wild origin, whereas reduced diversity might reflect bottlenecks associated with aquaculture or the aquarium trade. GenomeScope2 calculated the heterozygosity of the *X. umbellata* early-invasion genome to be approximately ~1.3%. This value falls within the range that has been previously reported for cnidarians (0.79-1.96%; Locatelli & Baums, 2024; Shinzato et al., 2021; Stephens et al., 2022; Young et al., 2024; Yu et al., 2022) and is slightly higher than values reported for octocorals (0.73-1.2%; Ip et al., 2023; Ledoux et al., 2025). While this is a measurement of a single individual, it preliminarily suggests that the *X. umbellata* population introduced to Puerto Rican reefs may retain relatively high genomic diversity, consistent with high adaptive potential and a wild origin.

2.6 Characterization of *Xenia umbellata* dinoflagellate symbionts

An additional goal of this study was to provide genomic information/resources for the dinoflagellate symbionts (Family Symbiodiniaceae) associated with Xenia umbellata in Puerto Rico. Having this baseline knowledge is critical for tracking holobiont adaptation to the region via symbiont switching throughout X. umbellata's continued spread (Creed et al., 2022; Sørensen et al., 2021). To conservatively identify Symbiodiniaceae scaffolds from the metagenome, we first aligned non-xeniid sequences to a Symbiodiniaceae reference database containing all publicly available genomes on NCBI (as of March 2025) using minimap2. Candidate scaffolds were then validated by re-alignment with BLASTn to the same database, with non-aligning sequences removed. Validated scaffolds were assigned genus-level taxonomy according to the best-matching reference genome. In total, 555,596 scaffolds, ranging in length from 200 to 25,187 bp, were identified as Symbiodiniaceae, with nucleotide similarities ranging from 95% to 100%. Of which, 555,520 (99.9% of scaffolds) aligned to the representative genomes from genus *Durusdinium*, suggesting the co-invading symbiont belongs to genus *Durusdinium*. Previous work reported *Xenia umbellata* in symbiosis with *Durusdinium*, but interestingly only at one shallow site in Ras Mohammed in the Red Sea, which was the only one of ten Red Sea sites where this association was observed (Osman et al., 2020). Our observation of Durusdinium as the dominant symbiont in this Puerto Rican individual suggests that X. umbellata has retained its original symbiosis during invasion. This finding provides critical baseline knowledge of the X. umbellata-Durusdinium association, enabling future efforts to track holobiont adaptation and monitor the spread of invasive symbionts.

Acknowledgments

- We thank Dr. Catherine S. McFadden for her continuous consultation on xeniids, Dr. Nilda Jimenez-
- Marrero (DNER-PR), Dr. Hector Ruiz-Torres (HJR Reefscaping) and the Department of Marine Sciences,
- 267 UPRM, for providing field and logistical support. We acknowledge the Department of Natural and
- 268 Environmental Resources for granting the sampling permit (O-VS-PVS15-SJ-01444-14032024) used in
- 269 this study.

244

245

246247

248

249250

251252

253

254

255

256

257258

259

260

261

262

263

264

276

270 Data accessibility

- 271 Raw reads can be accessed through the NBCI Sequence Read Archive (SRR34963192). This Genome
- Assembly project has been deposited at DDBJ/ENA/GenBank under the accession GCA 021976095.1.
- 273 Data sources are linked to the NCBI BioSample and BioProject numbers SAMN50581036 and
- 274 PRJNA1304975. All Symbiodiniaceae sequences and metadata are available for download on Zenodo
- 275 (10.5281/zenodo.16849361)

References

- Alonge, M., Lebeigle, L., Kirsche, M., Jenike, K., Ou, S., Aganezov, S., Wang, X., Lippman, Z. B.,
- Schatz, M. C., & Soyk, S. (2022). Automated assembly scaffolding using RagTag elevates a new
- tomato system for high-throughput genome editing. *Genome Biology*, 23(1), 258.
- 280 https://doi.org/10.1186/s13059-022-02823-7
- Astashyn, A., Tvedte, E. S., Sweeney, D., Sapojnikov, V., Bouk, N., Joukov, V., Mozes, E., Strope, P. K.,
- Sylla, P. M., Wagner, L., Bidwell, S. L., Brown, L. C., Clark, K., Davis, E. W., Smith-White, B.,
- 283 Hlavina, W., Pruitt, K. D., Schneider, V. A., & Murphy, T. D. (2024). Rapid and sensitive
- detection of genome contamination at scale with FCS-GX. Genome Biology, 25(1), 60.
- 285 https://doi.org/10.1186/s13059-024-03198-7

- Bojko, J., Burgess, A. L., Baker, A. G., & Orr, C. H. (2021). Invasive Non-Native Crustacean Symbionts:
 Diversity and Impact. *Journal of Invertebrate Pathology*, *186*, 107482.
 https://doi.org/10.1016/j.jip.2020.107482
- Bordenstein, S. R., & Theis, K. R. (2015). Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. *PLoS Biology*, *13*(8), e1002226. https://doi.org/10.1371/journal.pbio.1002226

293

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318 319

- Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. *Nature Methods*, *12*(1), Article 1. https://doi.org/10.1038/nmeth.3176
- Bushnell, B. (2014, March 17). BBMap: A Fast, Accurate, Splice-Aware Aligner.
 https://www.semanticscholar.org/paper/BBMap%3A-A-Fast%2C-Accurate%2C-Splice-Aware-Aligner-Bushnell/f64dd54444a724574deb7710888091350eebb2b9
 - Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. *BMC Bioinformatics*, 10, 421. https://doi.org/10.1186/1471-2105-10-421
 - Castro, N., Vilela, B., Mata-Sucre, Y., Marques, A., Gagnon, E., Lewis, G. P., Costa, L., & Souza, G. (n.d.). Repeatome evolution across space and time: Unravelling repeats dynamics in the plant genus Erythrostemon Klotzsch (*Leguminosae Juss*). *Molecular Ecology*, *n/a*(n/a), e17510. https://doi.org/10.1111/mec.17510
 - Challis, R., Richards, E., Rajan, J., Cochrane, G., & Blaxter, M. (2020). BlobToolKit: Interactive quality assessment of genome assemblies. G3: Genes, Genomes, Genetics, 10(4), 1361–1374. https://doi.org/10.1534/g3.119.400908
 - Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics*, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560
 - Creed, R. P., Brown, B. L., & Skelton, J. (2022). The potential impacts of invasions on native symbionts. *Ecology*, 103(8), e3726. https://doi.org/10.1002/ecy.3726
 - Gutekunst, J., Andriantsoa, R., Falckenhayn, C., Hanna, K., Stein, W., Rasamy, J., & Lyko, F. (2018). Clonal genome evolution and rapid invasive spread of the marbled crayfish. *Nature Ecology & Evolution*, 2(3), 567–573. https://doi.org/10.1038/s41559-018-0467-9
 - Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R., & Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. *Genome Biology*, 9(1), R7. https://doi.org/10.1186/gb-2008-9-1-r7
 - Hahn, M. A., & Rieseberg, L. H. (2017). Genetic admixture and heterosis may enhance the invasiveness of common ragweed. *Evolutionary Applications*, 10(3), 241–250. https://doi.org/10.1111/eva.12445
- Halász, A., Mcfadden, C. S., Toonen, R., & Benayahu, Y. (2019). Re-description of type material of Xenia
 Lamarck, 1816 (Octocorallia: Xeniidae). *Zootaxa*, 4652(2), 201–239.
 https://doi.org/10.11646/zootaxa.4652.2.1
- Hu, M., Zheng, X., Fan, C.-M., & Zheng, Y. (2020). Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. *Nature*, *582*(7813), 534–538. https://doi.org/10.1038/s41586-020-2385-7
- Hussa, E. A., & Goodrich-Blair, H. (2013). It Takes a Village: Ecological and Fitness Impacts of
 Multipartite Mutualism. *Annual Review of Microbiology*, 67(1), 161–178.
 https://doi.org/10.1146/annurev-micro-092412-155723
- Ip, J. C.-H., Ho, M.-H., Chan, B. K. K., & Qiu, J.-W. (2023). A draft genome assembly of reef-building octocoral Heliopora coerulea. *Scientific Data*, 10(1), 381. https://doi.org/10.1038/s41597-023-02291-z
- Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y.,
- Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. *Bioinformatics*, 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031

- Kołodziejczyk, J., Fijarczyk, A., Porth, I., Robakowski, P., Vella, N., Vella, A., Kloch, A., & Biedrzycka,
 A. (2025). Genomic investigations of successful invasions: The picture emerging from recent
 studies. *Biological Reviews of the Cambridge Philosophical Society*, 100(3), 1396–1418.
 https://doi.org/10.1111/brv.70005
- 340 Korf, I. (2004). Gene finding in novel genomes. *BMC Bioinformatics*, *5*(1), 59. https://doi.org/10.1186/1471-2105-5-59

- Ledoux, J.B., Gomez-Garrido, J., Cruz, F., Camara Ferreira, F., Matos, A., Sarropoulou, X., Ramirez Calero, S., Aurelle, D., Lopez-Sendino, P., Grayson, N. E., Moore, B. S., Antunes, A., Aguilera,
 L., Gut, M., Salces-Ortiz, J., Fernández, R., Linares, C., Garrabou, J., & Alioto, T. (2025).
 Chromosome-Level Genome Assembly and Annotation of Corallium rubrum: A Mediterranean
 Coral Threatened by Overharvesting and Climate Change. *Genome Biology and Evolution*, 17(2),
 evae253. https://doi.org/10.1093/gbe/evae253
 - Lee, C. E. (2002). Evolutionary genetics of invasive species. *Trends in Ecology & Evolution*, 17(8), 386–391. https://doi.org/10.1016/S0169-5347(02)02554-5
 - Lee, C.C., & Wang, J. (2018). Rapid Expansion of a Highly Germline-Expressed Mariner Element Acquired by Horizontal Transfer in the Fire Ant Genome. *Genome Biology and Evolution*, 10(12), 3262–3278. https://doi.org/10.1093/gbe/evy220
 - Lineage-specific symbionts mediate differential coral responses to thermal stress | Microbiome | Full Text. (n.d.). Retrieved September 4, 2025, from https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-023-01653-4
 - Locatelli, N. S., & Baums, I. B. (2024). Genomes of the Caribbean reef-building corals Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. *bioRxiv*, 2024.08.21.608299. https://doi.org/10.1101/2024.08.21.608299
- Majoros, W. H., Pertea, M., & Salzberg, S. L. (2004). TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. *Bioinformatics*, 20(16), 2878–2879.
 https://doi.org/10.1093/bioinformatics/bth315
 - Makino, T., & Kawata, M. (2019). Invasive invertebrates associated with highly duplicated gene content. *Molecular Ecology*, 28(7), 1652–1663. https://doi.org/10.1111/mec.15019
 - Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A., & Zdobnov, E. M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes (No. arXiv:2106.11799). arXiv. https://doi.org/10.48550/arXiv.2106.11799
 - Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics*, 27(6), 764–770. https://doi.org/10.1093/bioinformatics/btr011
 - McGaughran, A., Dhami, M. K., Parvizi, E., Vaughan, A. L., Gleeson, D. M., Hodgins, K. A., Rollins, L. A., Tepolt, C. K., Turner, K. G., Atsawawaranunt, K., Battlay, P., Congrains, C., Crottini, A., Dennis, T. P. W., Lange, C., Liu, X. P., Matheson, P., North, H. L., Popovic, I., ... Wilson, J. (2024). Genomic Tools in Biological Invasions: Current State and Future Frontiers. *Genome Biology and Evolution*, 16(1), evad230. https://doi.org/10.1093/gbe/evad230
 - Mérel, V., Gibert, P., Buch, I., Rodriguez Rada, V., Estoup, A., Gautier, M., Fablet, M., Boulesteix, M., & Vieira, C. (2021). The Worldwide Invasion of Drosophila suzukii Is Accompanied by a Large Increase of Transposable Element Load and a Small Number of Putatively Adaptive Insertions. *Molecular Biology and Evolution*, 38(10), 4252–4267. https://doi.org/10.1093/molbev/msab155
 - Mezger, S. D., Klinke, A., Tilstra, A., El-Khaled, Y. C., Thobor, B., & Wild, C. (2022). The widely distributed soft coral *Xenia umbellata* exhibits high resistance against phosphate enrichment and temperature increase. *Scientific Reports*, 12, 22135. https://doi.org/10.1038/s41598-022-26082-9
- temperature increase. *Scientific Reports, 12,* 22135. https://doi.org/10.1038/s41598-022-26
 Mikheenko, A., Saveliev, V., Hirsch, P., & Gurevich, A. (2023). WebQUAST: Online evaluation of
 genome assemblies. *Nucleic Acids Research, 51*(W1), W601–W606.
 https://doi.org/10.1093/nar/gkad406

- Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S.
 C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The
 protein families database in 2021. *Nucleic Acids Research*, 49(D1), D412–D419.
 https://doi.org/10.1093/nar/gkaa913
- Nadir, E., Lotan, T., & Benayahu, Y. (2023). Xenia umbellata (Octocorallia): A novel model organism for
 studying octocoral regeneration ability. *Frontiers in Marine Science*, 10.
 https://doi.org/10.3389/fmars.2023.1021679
- Newkirk, C. R., Frazer, T. K., Martindale, M. Q., & Schnitzler, C. E. (2020). Adaptation to Bleaching: Are
 Thermotolerant Symbiodiniaceae Strains More Successful Than Other Strains Under Elevated
 Temperatures in a Model Symbiotic Cnidarian? *Frontiers in Microbiology*, 11.
 https://doi.org/10.3389/fmicb.2020.00822
 - North, H. L., McGaughran, A., & Jiggins, C. D. (2021). Insights into invasive species from whole-genome resequencing. *Molecular Ecology*, *30*(23), 6289–6308. https://doi.org/10.1111/mec.15999

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426 427

428

- Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: A new versatile metagenomic assembler. *Genome Research*, 27(5), 824–834. https://doi.org/10.1101/gr.213959.116
- O'Donnell, D. R., Parigi, A., Fish, J. A., Dworkin, I., & Wagner, A. P. (2014). The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies. *PLoS ONE*, *9*(6), e100163. https://doi.org/10.1371/journal.pone.0100163
- Osman, E. O., Suggett, D. J., Voolstra, C. R., Pettay, D. T., Clark, D. R., Pogoreutz, C., Sampayo, E. M., Warner, M. E., & Smith, D. J. (2020). Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. *Microbiome*, 8(1), Article 1. https://doi.org/10.1186/s40168-019-0776-5
- Palmer, J. M., & Stajich, J. (2020). *Funannotate v1.8.1: Eukaryotic genome annotation* [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.4054262
- Pita, L., Fraune, S., & Hentschel, U. (2016). Emerging Sponge Models of Animal-Microbe Symbioses. *Frontiers in Microbiology*, 7. https://www.frontiersin.org/articles/10.3389/fmicb.2016.02102
- Pluess, A. R., Frank, A., Heiri, C., Lalagüe, H., Vendramin, G. G., & Oddou-Muratorio, S. (2016). Genome–environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica. *New Phytologist*, 210(2), 589–601. https://doi.org/10.1111/nph.13809
- Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G., & Toth, I. K. (2015). Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. *Analytical Methods*, 8(1), 12–24. https://doi.org/10.1039/C5AY02550H
- Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assembler. *Current Protocols in Bioinformatics*, 70(1), e102. https://doi.org/10.1002/cpbi.102
- Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. *Nature Communications*, *11*(1), 1432. https://doi.org/10.1038/s41467-020-14998-3
- Rawlings, N. D., Barrett, A. J., Thomas, P. D., Huang, X., Bateman, A., & Finn, R. D. (2018). The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. *Nucleic Acids Research*, 46(D1), D624–D632. https://doi.org/10.1093/nar/gkx1134
- 430 Ruiz-Allais, J. P., Amaro, M. E., McFadden, C. S., Halász, A., & Benayahu, Y. (2014). The first incidence 431 of an alien soft coral of the family Xeniidae in the Caribbean, an invasion in eastern Venezuelan 432 coral communities. Coral Reefs, 33(2), 287–287. doi:10.1007/s00338-013-1122-1
- Ruiz-Allais, J. P., Benayahu, Y., & Lasso-Alcalá, O. M. (2021). The invasive octocoral Unomia stolonifera (Alcyonacea, Xeniidae) is dominating the benthos in the Southeastern Caribbean Sea. doi:10.5281/ZENODO.4784709

- Shah, A., Hoffman, J. I., & Schielzeth, H. (2020). Comparative Analysis of Genomic Repeat Content in Gomphocerine Grasshoppers Reveals Expansion of Satellite DNA and Helitrons in Species with Unusually Large Genomes. *Genome Biology and Evolution*, 12(7), 1180–1193. https://doi.org/10.1093/gbe/evaa119
- Shinzato, C., Takeuchi, T., Yoshioka, Y., Tada, I., Kanda, M., Broussard, C., Iguchi, A., Kusakabe, M.,
 Marin, F., Satoh, N., & Inoue, M. (2021). Whole-Genome Sequencing Highlights Conservative
 Genomic Strategies of a Stress-Tolerant, Long-Lived Scleractinian Coral, Porites australiensis
 Vaughan, 1918. Genome Biology and Evolution, 13(12), evab270.
 https://doi.org/10.1093/gbe/evab270
 - Slater, G. S. C., & Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. *BMC Bioinformatics*, 6(1), 31. https://doi.org/10.1186/1471-2105-6-31

- Sørensen, M. E. S., Wood, A. J., Cameron, D. D., & Brockhurst, M. A. (2021). Rapid compensatory evolution can rescue low fitness symbioses following partner switching. *Current Biology*, *31*(17), 3721-3728.e4. https://doi.org/10.1016/j.cub.2021.06.034
- Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., & Morgenstern, B. (2006). AUGUSTUS: *Ab initio* prediction of alternative transcripts. *Nucleic Acids Research*, *34*(suppl_2), W435–W439. https://doi.org/10.1093/nar/gkl200
- Stephens, T. G., Lee, J., Jeong, Y., Yoon, H. S., Putnam, H. M., Majerová, E., & Bhattacharya, D. (2022). High-quality genome assembles from key Hawaiian coral species. *GigaScience*, *11*, giac098. https://doi.org/10.1093/gigascience/giac098
- Stévenne, C., Micha, M., Plumier, J.-C., & Roberty, S. (2021). Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems. *Frontiers in Marine Science*, 8. https://doi.org/10.3389/fmars.2021.698853
- Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O., & Borodovsky, M. (2008). Gene prediction in novel fungal genomes using an *ab initio* algorithm with unsupervised training. *Genome Research*, 18(12), 1979–1990. https://doi.org/10.1101/gr.081612.108
- Toledo-Rodriguez, D. A., Veglia, A. J., Marrero, N. M. J., Gomez-Samot, J. M., McFadden, C. S., Weil, E., & Schizas, N. V. (2025). Shadows over Caribbean reefs: Occurrence of a new invasive soft coral species, *Xenia umbellata*, in southwest Puerto Rico. *Coral Reefs*, *44*(4), 1439–1444. https://doi.org/10.1007/s00338-025-02670-5
- Veglia, A. J., & Watkins, J. A. (2025). *ZymoBIOMICS DNA/RNA Miniprep Kit ViDaB Lab*. protocols.io. https://doi.org/10.17504/protocols.io.6qpvrw41zlmk/v1
- von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H., & Dutilh, B. E. (2019). Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. *Genome Biology*, 20(1), 217. https://doi.org/10.1186/s13059-019-1817-x
- Wang, C., Zheng, X., Kvitt, H., Sheng, H., Sun, D., Niu, G., Tchernov, D., & Shi, T. (2023). Lineage-specific symbionts mediate differential coral responses to thermal stress. *Microbiome*, *11*, 211. https://doi.org/10.1186/s40168-023-01694-1
- Wu, N., Zhang, S., Li, X., Cao, Y., Liu, X., Wang, Q., Liu, Q., Liu, H., Hu, X., Zhou, X. J., James, A. A.,
 Zhang, Z., Huang, Y., & Zhan, S. (2019). Fall webworm genomes yield insights into rapid
 adaptation of invasive species. *Nature Ecology & Evolution*, 3(1), 105–115.
 https://doi.org/10.1038/s41559-018-0746-5
- Young, B. D., Williamson, O. M., Kron, N. S., Andrade Rodriguez, N., Isma, L. M., MacKnight, N. J.,
 Muller, E. M., Rosales, S. M., Sirotzke, S. M., Traylor-Knowles, N., Williams, S. D., & Studivan,
 M. S. (2024). Annotated genome and transcriptome of the endangered Caribbean mountainous
 star coral (Orbicella faveolata) using PacBio long-read sequencing. *BMC Genomics*, 25, 226.
 https://doi.org/10.1186/s12864-024-10092-w
- 483 Yu, Y., Nong, W., So, W. L., Xie, Y., Yip, H. Y., Haimovitz, J., Swale, T., Baker, D. M., Bendena, W. G., Chan, T. F., Chui, A. P. Y., Lau, K. F., Qian, P.-Y., Qiu, J.-W., Thibodeau, B., Xu, F., & Hui, J. H.

485	L. (2022). Genome of elegance coral Catalaphyllia jardinei (Euphylliidae). Frontiers in Marine
486	Science, 9. https://doi.org/10.3389/fmars.2022.991391
487	Zheng, J., Ge, Q., Yan, Y., Zhang, X., Huang, L., & Yin, Y. (2023). dbCAN3: Automated carbohydrate-
488	active enzyme and substrate annotation. <i>Nucleic Acids Research</i> , 51(W1), W115–W121.
489	https://doi.org/10.1093/nar/gkad328