GENOME SEQUENCING

Early Invasion Genomic Resources for *Xenia umbellata* (Native to the Red Sea) and its Associated Dinoflagellate Symbionts in Puerto Rico

Alex J. Veglia^{1,2a}, Daniel A. Toledo-Rodriguez^{2,3}, Joyah A. Watkins⁴, Nikolaos V. Schizas³

¹ Department of Biology, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA, ² EcoAzul, HC01 Box 4729, Lajas, PR 00667, USA, ³ Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA, ⁴ BioSciences Department, Rice University, 6100 Main St, Houston, TX 77005, USA

https://doi.org/10.56179/001c.147130

Biodiversity Genomes

The frequency of xeniid soft coral invasions on Caribbean coral reefs is increasing, with three alien species reported so far. Xenia umbellata (Anthozoa, Octocorallia, Malacalcyonacea, Xeniidae), native to the Red Sea, was first reported on Puerto Rico coral reefs in October 2023. Here, we present the first draft genome assembly and early-invasion genomic resources for the rapidly spreading X. umbellata and its dinoflagellate symbiont (Family Symbiodiniaceae) produced from a specimen collected five months after the initial report. Using deep Illumina metagenomic sequencing (~243X coverage), we obtained ~272.4 million high-quality 150 bp reads. The X. umbellata draft genome assembly is 151.14 Mbp in length, composed of 27,739 scaffolds, with an N50 of 6,477,837 bp. GenomeScope2 predicted a haploid genome size of 171.6-171.9 Mbp and calculated a heterozygosity of 1.27-1.29%. This suggests that the assembly captures ~88% of the X. umbellata genome, and the relatively high heterozygosity may indicate introduction from a genetically diverse source population. Completeness was further supported by BUSCO analysis (anthozoa odb12 lineage), which identified 91.4% complete and 3.9% fragmented BUSCOs. Furthermore, 555,596 sequences were identified as belonging to Symbiodiniaceae, of which 99.97% (n= 555,520) aligned to a Durusdinium reference genome, suggesting a potential co-invading symbiont belonging to the genus *Durusdinium*, consistent with previous reports of *X*. umbellata-Durusdinium associations in its native range. Early establishment of genomic and symbiotic resources provides a critical foundation for assessing population connectivity, tracking range expansion, exploring host-symbiont evolutionary dynamics, and identifying genomic features linked to the invasive potential of X. umbellata across Puerto Rico and the wider Caribbean.

1. Introduction

The octocoral *Xenia umbellata* Lamarck, 1816 is a common component of Red Sea coral reef ecosystems, known for its high tolerance to environmental stressors and rapid proliferation, facilitated by whole-body regeneration from even a single tentacle (Halász et al. 2019; Nadir, Lotan, and Benayahu 2023; Mezger et al. 2022). This remarkable regenerative capacity has also established

X. umbellata as an emerging model system for studying regeneration (Nadir, Lotan, and Benayahu 2023). In October 2023, initial reports from recreational divers documented the onset of a Xenia umbellata invasion originally misidentified as Unomia stolonifera, which is actively spreading in Venezuela (Ruiz-Allais et al. 2014; Ruiz-Allais, Benayahu, and Lasso-Alcalá 2021) - on Puerto Rico's already degraded reefs, raising concerns about the species' potential to take over ecosystems both local and in neighboring islands with little natural resistance (Toledo-Rodriguez et al. 2025). Capable of colonizing available substrate (i.e., coral rubble, rocky substrate, and bare sand) and overgrowing native benthic organisms like ecosystem engineering stony corals and sponges (Figure 1), significant effort from Puerto Rico's Department of Natural and Environmental Resources Emergency Response Unit has been dedicated to tracking and eradicating X. umbellata patches, yet new patches continue to be found in shallow (<30 ft) and deeper reefs (up to 55 m). As the region prepares for the long-term management of X. umbellata's potential impact on Caribbean reefs, a lack of genomic and microbial resources for this species remains. Such genomic data, especially generated during the early phase of the invasion, can provide critical insights into its invasion dynamics and establish a foundation for future research.

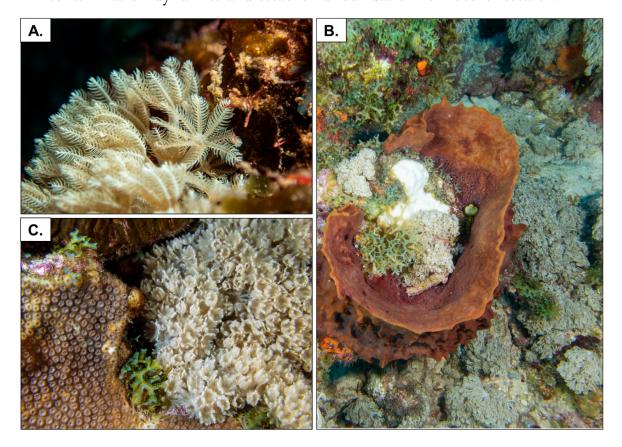


Figure 1. Field images of *Xenia umbellata* on reefs in La Parguera, Puerto Rico. (A) Close-up view highlighting polyp morphology. (B) *X. umbellata* colonizing substrate surrounding and within a giant barrel sponge (*Xestospongia muta*). (C) *X. umbellata* encroaching on the stony coral *Orbicella faveolata*. All photos by Daniel A. Toledo-Rodriguez.

Invasion genomics provides an effective evolutionary framework for investigating the invasion process, from potential introduction pathways to the establishment, spread, adaptation, and population dynamics of the invader (C. E. Lee 2002; McGaughran et al. 2024; North, McGaughran, and Jiggins 2021). For example, by characterizing an introduced species' genome, investigators can identify signatures of invasiveness, such as standing genetic variation (e.g., heterozygosity or admixture) or structural variation (e.g., gene duplications), which may facilitate rapid adaptation to the novel environment (Hahn and Rieseberg 2017; Makino and Kawata 2019; McGaughran et al. 2024; O'Donnell et al. 2014; Wu et al. 2019). Such genomic knowledge can help predict invasive potential, forecast invasion success, and support management priority setting in efforts to impede spread (McGaughran et al. 2024). Moreover, genomic resources generated during the early phases of an invasion provide critical baseline data for reconstructing invasion histories and identifying the genomic mechanisms of adaptation underlying the spread. While this information is typically generated only for the invading metazoan, it is equally important to characterize its associated microbial symbionts, which may influence the success and adaptability of the invader.

Xenia umbellata, like all cnidarians, harbors diverse microbial symbionts inclusive of dinoflagellates (Family Symbiodiniaceae), bacteria, archaea, fungi, and viruses, collectively referred to as the holobiont (Stévenne et al. 2021). The acquisition or loss of symbiotic partners can strongly influence host physiology by conferring new traits that may alter holobiont ecology and fitness (Bordenstein and Theis 2015; Hussa and Goodrich-Blair 2013; Pita, Fraune, and Hentschel 2016). For example, in cnidarians, the identity of associated Symbiodiniaceae has been shown to influence host resilience to abiotic and biotic stressors, emphasizing the role of microbial symbionts in driving environmental adaptation and, ultimately, invasion success (Wang et al. 2023; Newkirk et al. 2020; Stévenne et al. 2021). Therefore, it is imperative to investigate the microbial symbionts of invaders and track changes in their communities as factors shaping invasion outcomes. In addition, these invasive microbial symbionts may directly affect native species by displacing resident symbionts or acting parasitically (Bojko et al. 2021). Considering both the host genome and its microbial symbionts as an integrated "hologenome" (Bordenstein and Theis 2015) provides a powerful framework for understanding how invasions are mediated at the genomic and ecological levels and supports the need for hologenomic resources to guide future studies and management strategies.

Here, we describe the production of early phase hologenomic resources for *Xenia umbellata* invading Puerto Rico's coastal waters. Using deep metagenomic sequencing, we generated the first high-quality draft genome of *X. umbellata* and characterized the taxonomy of its associated Symbiodiniaceae. These resources were derived from a type specimen collected within six months of the initial report of the invasion. By

integrating host and symbiont data, this study provides the first hologenomic reference for *X. umbellata*, establishing a foundation for both scientific investigation and management applications.

2. Data description

2.1. Sampling, DNA extraction, and Sequencing

Several polyps from a Xenia umbellata patch located in the La Parguera Natural Reserve at a depth of 21.6 m were carefully collected with tweezers on SCUBA and placed in a 50 mL tube in March 2024 (Table 1). The tissue sample in the 50 mL tube containing ambient seawater was then transferred to the lab on ice. Once in the lab, the ambient seawater was removed from the 50 mL tube. The polyps in the original 50 mL tube were then immediately placed in -80 °C for storage until DNA extraction. DNA extraction was performed using the ZymoBIOMICS DNA/RNA Miniprep kit (Zymo Research) with minor modifications to the provider's protocols (Veglia and Watkins 2025). Extracted DNA was sequenced on the Illumina NovaSeq 6000 platform using 150 bp paired-end reads, following library preparation with the Illumina DNA PCR-Free Prep kit. Sequencing was performed with a target output of 40 Gb, corresponding to approximately 133 million paired-end 150 bp reads (~266 million total reads). Sample quality was assessed using Tapestation and Nanodrop, and library quality was evaluated using Tapestation and qPCR. DNA input met provider requirements: ≥ 10 ng/ μ L concentration, ≥ 0.1 μ g total quantity, 260/280ratio of 1.5-2.2, and DIN value between 6.0-10.0.

Table 1. MIxS data description for the Xenia umbellata collected from Puerto Rico coral reefs.

Item	Definition
General feature of classification	
Classification	Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Cnidaria; Anthozoa; Octocorallia; Alcyonacea; Xeniidae; <i>Xenia; Xenia umbellata</i>
Investigation type	Eukaryote draft genome assembly
Project name	Xenia umbellata early Puerto Rico invasion hologenomic resources
Environment	Coral reef
Geographic location	Caribbean Sea; Puerto Rico; Lajas, La Parguera Natural Reserve; UR2
Latitude, longitude	17.895780 °N, -66.973600 °W
Collection date	3/20/2024
Environment properties	Insular shelf edge: spur and groove
Depth	21.6 m
Collector	Daniel A. Toledo-Rodriguez
Sequencing	
Sequencing method	Illumina NovaSeq 6000; paired-end reads (2x150)
Assembly method	de novo assembly
Program	SPAdes v4.0.0
Finishing strategy	Scaffolding with RagTag v2.1.0
Accessibility	

Item	Definition
DDBJ/ENA/ GenBank	SAMN50581036; PRJNA1304975; GCA_021976095.1

2.2. Sequence processing and assembly

Sequencing resulted in 278,081,250 raw reads with 96% of bases having a phred score >20. Raw reads were then processed and cleaned with the program fastp (v0.23.2; Chen et al. 2018) resulting 272,355,896 high quality cleaned reads. High quality reads were assembled with the program SPAdes (v4.0.0; Prjibelski et al. 2020) using the metaSPAdes algorithm (Nurk et al. 2017) producing 1,092,378 scaffolds. The metagenome assembly provided a peak into the *X. umbellata* hologenome containing scaffolds sources from the xeniid metazoan as well as all its microbial symbionts inclusive of the endosymbiotic dinoflagellates within Family Symbiodiniaceae.

2.3. Xenia umbellata Genome Assembly, Assessment, and Annotation

To extract all xeniid scaffolds from the metagenome assembly, BLASTn (Camacho et al. 2009) was used to align contigs against a chromosomelevel genome assembly of Ovabunda sp. (Hu et al. 2020). The genome assembly was originally labeled as Xenia sp., however it was later confirmed to be Ovabunda sp. (pers. comm. Catherine McFadden), a closely related genus. All sequences exhibiting >95% nucleotide identity and alignment lengths >100 bp were retained as putative xeniid scaffolds. On the remaining sequences, an additional scan for anthozoan-like scaffolds was performed using the program CAT (von Meijenfeldt et al. 2019) and the CAT_nr database (v20241212). All likely xeniid sequences (n=132,376), identified through BLASTn and/or CAT, were pooled into a single fasta file. The program Rag Tag (v2.1.0; Alonge et al. 2022) was then used to further scaffold these sequences using the chromosome-level Ovabunda genome assembly (Hu et al. 2020) as a reference. Next, the scaffolded assembly was then assessed for any contaminants (e.g., mitochondrial sequences, non-target organism sequences) to be removed using NCBI's Foreign Contamination Screen (Astashyn et al. 2024). Finally, identified contaminants were removed and length filtering was then performed using the 'clean' function of the program funannotate (v1.8.17; Palmer and Stajich 2020) resulting in a final assembly of 27,739 sequences with lengths greater than 500 nucleotides. Assembly quality was assessed using QUAST (v5.2.0; Mikheenko et al. 2023) revealing that the final assembly had a total length of 151,140,580 bp and an N50 of 6,477,837 bp (Figure 2). Genome completeness was assessed using BUSCO (v5.8.0; Manni et al. 2021) with the anthozoan lineage database (anthozoa odb12.2025-07-01). The analysis revealed that 91.4% of BUSCOs were complete, comprising 89.9% single-copy and 1.5% duplicated genes. An additional 3.9% were fragmented and 4.7% were missing. Taken together, the QUAST and BUSCO results indicate high contiguity and completeness of

the *Xenia umbellata* genome assembly. Next, we used the <u>stats.sh</u> program within the BBMAP tool kit (v39.15; Bushnell 2014) to assess base content of the genome assembly. The genome assembly exhibited an overall base composition of 32.60% adenine (A), 32.82% thymine (T), 17.29% cytosine (C), and 17.29% guanine (G), with a GC content of 34.58% and 1.84% ambiguous bases (Ns), likely introduced during scaffolding and is expected for a draft genome assembled from short-read data. Further sequencing or long-read integration would likely improve contiguity, but this assembly represents a high-quality and biologically informative first reference genome for *Xenia umbellata*.

Prior to annotation, repetitive elements in the X. umbellata assembly were identified and classified de novo using RepeatModeler (v 2.0.7; Flynn et al., 2020). Identified repeats were then quantified and soft-masked assembly-wide with RepeatMasker (v4.2.1; Smit et al., 2013–2015) using both the custom library and the Dfam/RepBase databases as references. The Xenia umbellata genome was then annotated with the funannotate (v1.8.17) pipeline. Genes prediction was done with the ab initio predictors AUGUSTUS (v3.5.0; Stanke et al. 2006), GeneMark-ES (v4.71; Ter-Hovhannisyan et al. 2008), SNAP (v2006-07-28; Korf 2004), and GlimmerHMM (v3.0.4; Majoros, Pertea, and Salzberg 2004) and protein homology evidence generated by aligning NCBI RefSeq invertebrate proteins (downloaded July 2025) to the soft-masked genome with DIAMOND (Buchfink, Xie, and Huson 2015) and Exonerate (Slater and Birney 2005). Consensus gene models were generated with EVidenceModeler (Haas et al. 2008), and functional annotation incorporated InterProScan (Jones et al. 2014), Pfam (Mistry et al. 2021), UniProt (v2025_03), MEROPS (v12.5; Rawlings et al. 2018), and dbCAN (v13; Zheng et al. 2023).

Annotation of the *Xenia umbellata* genome with Funannotate predicted 21,596 protein-coding genes across 20,844 mRNAs and 752 tRNAs, with an average gene length of ~3.1 kb and an average protein length of 399 aa. The annotation comprised 142,785 exons (16,289 multi-exon and 4,555 single-exon transcripts). Functional annotation assigned putative functions to: 11,909 genes with GO terms, 14,275 InterProScan annotations, 11,452 Pfam domains, 692 MEROPS proteases, and 197 CAZymes. In addition, 1,143 genes were assigned common names through similarity to UniProt proteins.

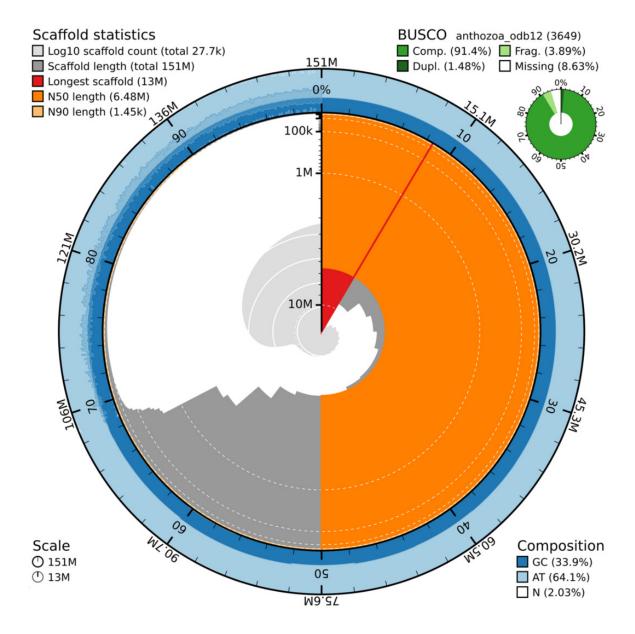


Figure 2. BlobToolKit (v4.4.5; Challis et al. 2020) snail plot illustrating scaffold metrics, completeness, and nucleotide composition of the draft genome assembly. The assembly comprises 27,739 scaffolds with a total length of 151.14 Mbp, a maximum scaffold size of 13 Mbp, an N50 of 6.48 Mbp, and an N90 of 1.45 kbp. BUSCO analysis against the anthozoa_odb12 dataset (n = 3,649 genes) recovered 91.4% complete (1.48% duplicated), 3.89% fragmented, and 8.63% missing orthologs, indicating high completeness. The genome has a GC content of 33.9%, AT content of 64.1%, and 2.03% ambiguous bases.

2.4. Pairwise Genome Comparison with a Closely Related Ovabunda Species

Pairwise genome comparisons using PyANI-plus (ANIb method; v0.0.1; Pritchard et al. 2015) yielded an Average Nucleotide Identity (ANI) of 93.2% (X. umbellata aligned to Ovabunda sp.) and 92.1% (Ovabunda sp. aligned to X. umbellata), with a mean ANI of 92.7%. Alignment coverage was asymmetric, with 70.8% of the X. umbellata draft genome (107,045,860 bp) aligning to Ovabunda sp. and 63.6% of the Ovabunda sp. assembly (141,702,152 bp) aligning to X. umbellata. Transformed ANI (tANI) values were 0.415 and 0.535, respectively (mean = 0.475), consistent with

substantial genomic divergence. These results indicate that while a large portion of the genome (\sim 64–71%) is shared at \sim 93% identity, considerable lineage-specific sequence divergence remains, consistent with intergeneric genomic differentiation. Next, we calculated the estimated *X. umbellata* genome size using the program GenomeScope2 (v2.0; Ranallo-Benavidez, Jaron, and Schatz 2020). The kmer histogram file used for GenomeScope2 analyses was generated with the program jellyfish (v2.3.1; Marçais and Kingsford 2011) with a "-m" equal to 21. GenomeScope analyses using 21-mer frequencies estimated the *X. umbellata* genome at \sim 171.7 (171.6-171.9) Mbp (R²=93.15%). The estimated 171.7 Mbp genome size is 25.3 Mbp shorter than the calculated genome size for the related *Ovabunda* sp. genome. This observed difference is likely driven by repeat content (the "repeatome"), as GenomeScope estimated that the *X. umbellata* genome is approximately 38.1% repetitive (\approx 66 Mbp). In contrast, the *Ovabunda* sp. genome is 46.2% repetitive (\approx 91 Mbp) (Hu et al. 2020).

Furthermore, repeat region analyses identified 27.8% of the *X. umbellata* assembly (~42.1 Mbp) as repetitive (26.97% interspersed repeats), dominated by unclassified elements (20.6%). Classified transposable elements comprised 6.4% of the genome (LINEs 2.6%, LTRs 1.5%, DNA transposons 2.3%). Transposable element expansions are a major driver of genomic divergence between species and have been reported to facilitate genome evolution in diverse eukaryotes (Castro et al., 2024; Pluess et al. 2016; Shah, Hoffman, and Schielzeth 2020). Future efforts should build on this baseline characterization of the *X. umbellata* repeatome to assess changes in element abundance and diversity that may signal genomic adaptations to novel environments during its continued spread (C. C. Lee and Wang 2018; Mérel et al. 2021).

2.5. X. umbellata Genome Heterozygosity: A Clue of Invasion Origin?

Genome-wide heterozygosity is hypothesized to provide insight into the adaptive and invasive potential of species (Kołodziejczyk et al. 2025). For example, the marbled crayfish (*Procambarus virginalis*), an emerging invasive species, possesses a triploid genome with high heterozygosity that is thought to facilitate its ecological success and spread (Gutekunst et al. 2018). In this context, establishing genome-wide heterozygosity for a specimen of *X. umbellata* collected during the early phase of an invasion provides a useful baseline for future comparisons, offers preliminary insight into adaptive capacity, and may help infer source populations: high diversity could indicate a wild origin, whereas reduced diversity might reflect bottlenecks associated with aquaculture or the aquarium trade. GenomeScope2 calculated the heterozygosity of the *X. umbellata* early-invasion genome to be approximately ~1.3%. This value falls within the range that has been previously reported for cnidarians (0.79-1.96%; Locatelli and Baums 2024; Shinzato et al. 2021; Stephens et al. 2022; Young et al. 2024; Yu et al. 2022) and is slightly higher

than values reported for octocorals (0.73-1.2%; Ip et al. 2023; Ledoux et al. 2025). While this is a measurement of a single individual, it preliminarily suggests that the *X. umbellata* population introduced to Puerto Rican reefs may retain relatively high genomic diversity, consistent with high adaptive potential and a wild origin.

2.6. Characterization of Xenia umbellata dinoflagellate symbionts

An additional goal of this study was to provide genomic information/ resources for the dinoflagellate symbionts (Family Symbiodiniaceae) associated with Xenia umbellata in Puerto Rico. Having this baseline knowledge is critical for tracking holobiont adaptation to the region via symbiont switching throughout X. umbellata's continued spread (Creed, Brown, and Skelton 2022; Sørensen et al. 2021). To conservatively identify Symbiodiniaceae scaffolds from the metagenome, we first aligned non-xeniid sequences to a Symbiodiniaceae reference database containing all publicly available genomes on NCBI (as of March 2025) using minimap2. Candidate scaffolds were then validated by re-alignment with BLASTn to the same database, with non-aligning sequences removed. Validated scaffolds were assigned genus-level taxonomy according to the best-matching reference genome. In total, 555,596 scaffolds, ranging in length from 200 to 25,187 bp, were identified as Symbiodiniaceae, with nucleotide similarities ranging from 95% to 100%. Of which, 555,520 (99.9% of scaffolds) aligned to the representative genomes from genus *Durusdinium*, suggesting the co-invading symbiont belongs to genus Durusdinium. Previous work reported Xenia umbellata in symbiosis with Durusdinium, but interestingly only at one shallow site in Ras Mohammed in the Red Sea, which was the only one of ten Red Sea sites where this association was observed (Osman et al. 2020). Our observation of *Durusdinium* as the dominant symbiont in this Puerto Rican individual suggests that X. umbellata has retained its original symbiosis during invasion. This finding provides critical baseline knowledge of the X. umbellata-Durusdinium association, enabling future efforts to track holobiont adaptation and monitor the spread of invasive symbionts.

Acknowledgments

We thank Dr. Catherine S. McFadden for her continued consultation on xeniids. We also thank Dr. Nilda Jimenez-Marrero (DNER-PR), Dr. Hector Ruiz-Torres (HJR Reefscaping), and the Department of Marine Sciences at UPRM for field and logistical support. The Department of Biology at UPRM provided consumables and lab space for molecular work. Molecular work and sequencing were personally funded by AJV and DATR. We acknowledge the Puerto Rico Department of Natural and Environmental Resources for granting the sampling permit (O-VS-

PVS15-SJ-01444-14032024) used in this study. Finally, we acknowledge the Florida Department of Environmental Protection (Award No. C1E0A5) for funding the Linux workstation used to conduct all computational analyses.

Data accessibility

Raw reads can be accessed through the NBCI Sequence Read Archive (SRR34963192). This Genome Assembly project has been deposited at DDBJ/ENA/GenBank under the accession GCA_021976095.1 and can be downloaded from Zenodo (https://zenodo.org/records/17287826). Data sources are linked to the NCBI BioSample and BioProject numbers SAMN50581036 and PRJNA1304975. All Symbiodiniaceae sequences and metadata are available for download on Zenodo (10.5281/zenodo.16849361)

Submitted: November 07, 2025 EST. Accepted: November 11, 2025 EST. Published: November 11, 2025 EST.

REFERENCES

- Alonge, M., L. Lebeigle, M. Kirsche, K. Jenike, S. Ou, S. Aganezov, X. Wang, Z. B. Lippman, M. C. Schatz, and S. Soyk. 2022. "Automated Assembly Scaffolding Using Rag Tag Elevates a New Tomato System for High-Throughput Genome Editing." *Genome Biology* 23 (1): 258. https://doi.org/10.1186/s13059-022-02823-7.
- Astashyn, A., E. S. Tvedte, D. Sweeney, V. Sapojnikov, N. Bouk, V. Joukov, E. Mozes, et al. 2024. "Rapid and Sensitive Detection of Genome Contamination at Scale with FCS-GX." *Genome Biology* 25 (1): 60. https://doi.org/10.1186/s13059-024-03198-7.
- Bojko, J., A. L. Burgess, A. G. Baker, and C. H. Orr. 2021. "Invasive Non-Native Crustacean Symbionts: Diversity and Impact." *Journal of Invertebrate Pathology* 186:107482. https://doi.org/10.1016/j.jip.2020.107482.
- Bordenstein, S. R., and K. R. Theis. 2015. "Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes." *PLoS Biology* 13 (8): e1002226. https://doi.org/10.1371/journal.pbio.1002226.
- Buchfink, B., C. Xie, and D. H. Huson. 2015. "Fast and Sensitive Protein Alignment Using DIAMOND." *Nature Methods* 12 (1). https://doi.org/10.1038/nmeth.3176.
- Bushnell, B. 2014. "BBMap: A Fast, Accurate, Splice-Aware Aligner." March 17, 2014. https://www.semanticscholar.org/paper/BBMap%3A-A-Fast%2C-Accurate%2C-Splice-Aware-Aligner-Bushnell/f64dd54444a724574deb7710888091350eebb2b9.
- Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden. 2009. "BLAST+: Architecture and Applications." *BMC Bioinformatics* 10:421. https://doi.org/10.1186/1471-2105-10-421.
- Challis, R., E. Richards, J. Rajan, G. Cochrane, and M. Blaxter. 2020. "BlobToolKit: Interactive Quality Assessment of Genome Assemblies." *G3: Genes, Genomes, Genetics* 10 (4): 1361–74. https://doi.org/10.1534/g3.119.400908.
- Chen, S., Y. Zhou, Y. Chen, and J. Gu. 2018. "Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor." *Bioinformatics* 34 (17): i884–90. https://doi.org/10.1093/bioinformatics/bty560.
- Creed, R. P., B. L. Brown, and J. Skelton. 2022. "The Potential Impacts of Invasions on Native Symbionts." *Ecology* 103 (8): e3726. https://doi.org/10.1002/ecy.3726.
- Gutekunst, J., R. Andriantsoa, C. Falckenhayn, K. Hanna, W. Stein, J. Rasamy, and F. Lyko. 2018. "Clonal Genome Evolution and Rapid Invasive Spread of the Marbled Crayfish." *Nature Ecology & Evolution* 2 (3): 567–73. https://doi.org/10.1038/s41559-018-0467-9.
- Haas, B. J., S. L. Salzberg, W. Zhu, M. Pertea, J. E. Allen, J. Orvis, O. White, C. R. Buell, and J. R. Wortman. 2008. "Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments." *Genome Biology* 9 (1): R7. https://doi.org/10.1186/gb-2008-9-1-r7.
- Hahn, M. A., and L. H. Rieseberg. 2017. "Genetic Admixture and Heterosis May Enhance the Invasiveness of Common Ragweed." *Evolutionary Applications* 10 (3): 241–50. https://doi.org/10.1111/eva.12445.
- Halász, A., C. S. Mcfadden, R. Toonen, and Y. Benayahu. 2019. "Re-Description of Type Material of *Xenia* Lamarck, 1816 (Octocorallia: Xeniidae)." *Zootaxa* 4652 (2): 201–39. https://doi.org/10.11646/zootaxa.4652.2.1.
- Hu, M., X. Zheng, C.-M. Fan, and Y. Zheng. 2020. "Lineage Dynamics of the Endosymbiotic Cell Type in the Soft Coral Xenia." *Nature* 582 (7813): 534–38. https://doi.org/10.1038/s41586-020-2385-7.

- Hussa, E. A., and H. Goodrich-Blair. 2013. "It Takes a Village: Ecological and Fitness Impacts of Multipartite Mutualism." *Annual Review of Microbiology* 67 (1): 161–78. https://doi.org/10.1146/annurev-micro-092412-155723.
- Ip, J. C.-H., M.-H. Ho, B. K. K. Chan, and J.-W. Qiu. 2023. "A Draft Genome Assembly of Reef-Building Octocoral *Heliopora coerulea*." *Scientific Data* 10 (1): 381. https://doi.org/10.1038/s41597-023-02291-z.
- Jones, P., D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, et al. 2014. "InterProScan 5: Genome-Scale Protein Function Classification." *Bioinformatics* 30 (9): 1236–40. https://doi.org/10.1093/bioinformatics/btu031.
- Kołodziejczyk, J., A. Fijarczyk, I. Porth, P. Robakowski, N. Vella, A. Vella, A. Kloch, and A. Biedrzycka. 2025. "Genomic Investigations of Successful Invasions: The Picture Emerging from Recent Studies." *Biological Reviews of the Cambridge Philosophical Society* 100 (3): 1396–1418. https://doi.org/10.1111/brv.70005.
- Korf, I. 2004. "Gene Finding in Novel Genomes." *BMC Bioinformatics* 5 (1): 59. https://doi.org/10.1186/1471-2105-5-59.
- Ledoux, J. B., J. Gomez-Garrido, F. Cruz, F. Camara Ferreira, A. Matos, X. Sarropoulou, S. Ramirez-Calero, et al. 2025. "Chromosome-Level Genome Assembly and Annotation of *Corallium rubrum*: A Mediterranean Coral Threatened by Overharvesting and Climate Change." *Genome Biology and Evolution* 17 (2): evae253. https://doi.org/10.1093/gbe/evae253.
- Lee, C. C., and J. Wang. 2018. "Rapid Expansion of a Highly Germline-Expressed Mariner Element Acquired by Horizontal Transfer in the Fire Ant Genome." *Genome Biology and Evolution* 10 (12): 3262–78. https://doi.org/10.1093/gbe/evy220.
- Lee, C. E. 2002. "Evolutionary Genetics of Invasive Species." *Trends in Ecology & Evolution* 17 (8): 386–91. https://doi.org/10.1016/S0169-5347(02)02554-5.
- Locatelli, N. S., and I. B. Baums. 2024. "Genomes of the Caribbean Reef-Building Corals *Colpophyllia natans*, *Dendrogyra cylindrus*, and *Siderastrea siderea*." *bioRxiv*, 2024.08.21.608299. https://doi.org/10.1101/2024.08.21.608299.
- Majoros, W. H., M. Pertea, and S. L. Salzberg. 2004. "TigrScan and GlimmerHMM: Two Open Source Ab Initio Eukaryotic Gene-Finders." *Bioinformatics* 20 (16): 2878–79. https://doi.org/10.1093/bioinformatics/bth315.
- Makino, T., and M. Kawata. 2019. "Invasive Invertebrates Associated with Highly Duplicated Gene Content." *Molecular Ecology* 28 (7): 1652–63. https://doi.org/10.1111/mec.15019.
- Manni, M., M. R. Berkeley, M. Seppey, F. A. Simao, and E. M. Zdobnov. 2021. "BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes." arXiv. https://doi.org/10.48550/arXiv.2106.11799.
- Marçais, G., and C. Kingsford. 2011. "A Fast, Lock-Free Approach for Efficient Parallel Counting of Occurrences of k-Mers." *Bioinformatics* 27 (6): 764–70. https://doi.org/10.1093/bioinformatics/btr011.
- McGaughran, A., M. K. Dhami, E. Parvizi, A. L. Vaughan, D. M. Gleeson, K. A. Hodgins, L. A. Rollins, et al. 2024. "Genomic Tools in Biological Invasions: Current State and Future Frontiers." *Genome Biology and Evolution* 16 (1): evad230. https://doi.org/10.1093/gbe/evad230.
- Meijenfeldt, F. A. B. von, K. Arkhipova, D. D. Cambuy, F. H. Coutinho, and B. E. Dutilh. 2019. "Robust Taxonomic Classification of Uncharted Microbial Sequences and Bins with CAT and BAT." *Genome Biology* 20 (1): 217. https://doi.org/10.1186/s13059-019-1817-x.

- Mérel, V., P. Gibert, I. Buch, V. Rodriguez Rada, A. Estoup, M. Gautier, M. Fablet, M. Boulesteix, and C. Vieira. 2021. "The Worldwide Invasion of *Drosophila suzukii* Is Accompanied by a Large Increase of Transposable Element Load and a Small Number of Putatively Adaptive Insertions." *Molecular Biology and Evolution* 38 (10): 4252–67. https://doi.org/10.1093/molbev/msab155.
- Mezger, S. D., A. Klinke, A. Tilstra, Y. C. El-Khaled, B. Thobor, and C. Wild. 2022. "The Widely Distributed Soft Coral *Xenia umbellata* Exhibits High Resistance against Phosphate Enrichment and Temperature Increase." *Scientific Reports* 12:22135. https://doi.org/10.1038/s41598-022-26082-9.
- Mikheenko, A., V. Saveliev, P. Hirsch, and A. Gurevich. 2023. "WebQUAST: Online Evaluation of Genome Assemblies." *Nucleic Acids Research* 51 (W1): W601–6. https://doi.org/10.1093/nar/gkad406.
- Mistry, J., S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. L. Sonnhammer, S. C. E. Tosatto, et al. 2021. "Pfam: The Protein Families Database in 2021." *Nucleic Acids Research* 49 (D1): D412–19. https://doi.org/10.1093/nar/gkaa913.
- Nadir, E., T. Lotan, and Y. Benayahu. 2023. "Xenia Umbellata (Octocorallia): A Novel Model Organism for Studying Octocoral Regeneration Ability." Frontiers in Marine Science 10. https://doi.org/10.3389/fmars.2023.1021679.
- Newkirk, C. R., T. K. Frazer, M. Q. Martindale, and C. E. Schnitzler. 2020. "Adaptation to Bleaching: Are Thermotolerant Symbiodiniaceae Strains More Successful Than Other Strains Under Elevated Temperatures in a Model Symbiotic Cnidarian?" *Frontiers in Microbiology* 11. https://doi.org/10.3389/fmicb.2020.00822.
- North, H. L., A. McGaughran, and C. D. Jiggins. 2021. "Insights into Invasive Species from Whole-Genome Resequencing." *Molecular Ecology* 30 (23): 6289–6308. https://doi.org/10.1111/mec.15999.
- Nurk, S., D. Meleshko, A. Korobeynikov, and P. A. Pevzner. 2017. "metaSPAdes: A New Versatile Metagenomic Assembler." *Genome Research* 27 (5): 824–34. https://doi.org/10.1101/gr.213959.116.
- O'Donnell, D. R., A. Parigi, J. A. Fish, I. Dworkin, and A. P. Wagner. 2014. "The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies." *PLoS ONE* 9 (6): e100163. https://doi.org/10.1371/journal.pone.0100163.
- Osman, E. O., D. J. Suggett, C. R. Voolstra, D. T. Pettay, D. R. Clark, C. Pogoreutz, E. M. Sampayo, M. E. Warner, and D. J. Smith. 2020. "Coral Microbiome Composition along the Northern Red Sea Suggests High Plasticity of Bacterial and Specificity of Endosymbiotic Dinoflagellate Communities." *Microbiome* 8 (1). https://doi.org/10.1186/s40168-019-0776-5.
- Palmer, J. M., and J. Stajich. 2020. "Funannotate v1.8.1: Eukaryotic Genome Annotation." Zenodo. https://doi.org/10.5281/zenodo.4054262.
- Pita, L., S. Fraune, and U. Hentschel. 2016. "Emerging Sponge Models of Animal-Microbe Symbioses." *Frontiers in Microbiology* 7. https://doi.org/10.3389/fmicb.2016.02102.
- Pluess, A. R., A. Frank, C. Heiri, H. Lalagüe, G. G. Vendramin, and S. Oddou-Muratorio. 2016. "Genome–Environment Association Study Suggests Local Adaptation to Climate at the Regional Scale in *Fagus sylvatica*." *New Phytologist* 210 (2): 589–601. https://doi.org/10.1111/nph.13809.
- Pritchard, L., R. H. Glover, S. Humphris, J. G. Elphinstone, and I. K. Toth. 2015. "Genomics and Taxonomy in Diagnostics for Food Security: Soft-Rotting Enterobacterial Plant Pathogens." *Analytical Methods* 8 (1): 12–24. https://doi.org/10.1039/C5AY02550H.
- Prjibelski, A., D. Antipov, D. Meleshko, A. Lapidus, and A. Korobeynikov. 2020. "Using SPAdes De Novo Assembler." *Current Protocols in Bioinformatics* 70 (1): e102. https://doi.org/10.1002/cpbi.102.

- Ranallo-Benavidez, T. R., K. S. Jaron, and M. C. Schatz. 2020. "GenomeScope 2.0 and Smudgeplot for Reference-Free Profiling of Polyploid Genomes." *Nature Communications* 11 (1): 1432. https://doi.org/10.1038/s41467-020-14998-3.
- Rawlings, N. D., A. J. Barrett, P. D. Thomas, X. Huang, A. Bateman, and R. D. Finn. 2018. "The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database." *Nucleic Acids Research* 46 (D1): D624–32. https://doi.org/10.1093/nar/gkx1134.
- Ruiz-Allais, J. P., M. E. Amaro, C. S. McFadden, A. Halász, and Y. Benayahu. 2014. "The First Incidence of an Alien Soft Coral of the Family Xeniidae in the Caribbean, an Invasion in Eastern Venezuelan Coral Communities." *Coral Reefs* 33 (2): 287–287. https://doi.org/10.1007/s00338-013-1122-1.
- Ruiz-Allais, J. P., Y. Benayahu, and O. M. Lasso-Alcalá. 2021. "The Invasive Octocoral *Unomia stolonifera* (Alcyonacea, Xeniidae) Is Dominating the Benthos in the Southeastern Caribbean Sea." https://doi.org/10.5281/ZENODO.4784709.
- Shah, A., J. I. Hoffman, and H. Schielzeth. 2020. "Comparative Analysis of Genomic Repeat Content in Gomphocerine Grasshoppers Reveals Expansion of Satellite DNA and Helitrons in Species with Unusually Large Genomes." *Genome Biology and Evolution* 12 (7): 1180–93. https://doi.org/10.1093/gbe/evaa119.
- Shinzato, C., T. Takeuchi, Y. Yoshioka, I. Tada, M. Kanda, C. Broussard, A. Iguchi, et al. 2021. "Whole-Genome Sequencing Highlights Conservative Genomic Strategies of a Stress-Tolerant, Long-Lived Scleractinian Coral, *Porites Australiensis* Vaughan, 1918." *Genome Biology and Evolution* 13 (12): evab270. https://doi.org/10.1093/gbe/evab270.
- Slater, G. S. C., and E. Birney. 2005. "Automated Generation of Heuristics for Biological Sequence Comparison." *BMC Bioinformatics* 6 (1): 31. https://doi.org/10.1186/1471-2105-6-31.
- Sørensen, M. E. S., A. J. Wood, D. D. Cameron, and M. A. Brockhurst. 2021. "Rapid Compensatory Evolution Can Rescue Low Fitness Symbioses Following Partner Switching." *Current Biology* 31 (17): 3721-3728.e4. https://doi.org/10.1016/j.cub.2021.06.034.
- Stanke, M., O. Keller, I. Gunduz, A. Hayes, S. Waack, and B. Morgenstern. 2006. "AUGUSTUS: Ab Initio Prediction of Alternative Transcripts." *Nucleic Acids Research* 34 (suppl_2): W435–39. https://doi.org/10.1093/nar/gkl200.
- Stephens, T. G., J. Lee, Y. Jeong, H. S. Yoon, H. M. Putnam, E. Majerová, and D. Bhattacharya. 2022. "High-Quality Genome Assembles from Key Hawaiian Coral Species." *GigaScience* 11:giac098. https://doi.org/10.1093/gigascience/giac098.
- Stévenne, C., M. Micha, J.-C. Plumier, and S. Roberty. 2021. "Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems." *Frontiers in Marine Science* 8. https://doi.org/10.3389/fmars.2021.698853.
- Ter-Hovhannisyan, V., A. Lomsadze, Y. O. Chernoff, and M. Borodovsky. 2008. "Gene Prediction in Novel Fungal Genomes Using an Ab Initio Algorithm with Unsupervised Training." *Genome Research* 18 (12): 1979–90. https://doi.org/10.1101/gr.081612.108.
- Toledo-Rodriguez, D. A., A. J. Veglia, N. M. J. Marrero, J. M. Gomez-Samot, C. S. McFadden, E. Weil, and N. V. Schizas. 2025. "Shadows over Caribbean Reefs: Occurrence of a New Invasive Soft Coral Species, *Xenia Umbellata*, in Southwest Puerto Rico." *Coral Reefs* 44 (4): 1439–44. https://doi.org/10.1007/s00338-025-02670-5.
- Veglia, A. J., and J. A. Watkins. 2025. "ZymoBIOMICS DNA/RNA Miniprep Kit ViDaB Lab." Protocols.Io. 2025. https://doi.org/10.17504/protocols.io.6qpvrw41zlmk/v1.

- Wang, C., X. Zheng, H. Kvitt, H. Sheng, D. Sun, G. Niu, D. Tchernov, and T. Shi. 2023. "Lineage-Specific Symbionts Mediate Differential Coral Responses to Thermal Stress." *Microbiome* 11:211. https://doi.org/10.1186/s40168-023-01694-1.
- Wu, N., S. Zhang, X. Li, Y. Cao, X. Liu, Q. Wang, Q. Liu, et al. 2019. "Fall Webworm Genomes Yield Insights into Rapid Adaptation of Invasive Species." *Nature Ecology & Evolution* 3 (1): 105–15. https://doi.org/10.1038/s41559-018-0746-5.
- Young, B. D., O. M. Williamson, N. S. Kron, N. Andrade Rodriguez, L. M. Isma, N. J. MacKnight, E. M. Muller, et al. 2024. "Annotated Genome and Transcriptome of the Endangered Caribbean Mountainous Star Coral (*Orbicella faveolata*) Using PacBio Long-Read Sequencing." BMC Genomics 25:226. https://doi.org/10.1186/s12864-024-10092-w.
- Yu, Y., W. Nong, W. L. So, Y. Xie, H. Y. Yip, J. Haimovitz, T. Swale, et al. 2022. "Genome of Elegance Coral *Catalaphyllia jardinei* (Euphylliidae)." *Frontiers in Marine Science* 9. https://doi.org/10.3389/fmars.2022.991391.
- Zheng, J., Q. Ge, Y. Yan, X. Zhang, L. Huang, and Y. Yin. 2023. "dbCAN3: Automated Carbohydrate- Active Enzyme and Substrate Annotation." *Nucleic Acids Research* 51 (W1): W115–21. https://doi.org/10.1093/nar/gkad328.